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Chun-Yi Su 

 

ABSTRACT 

 

 

By 2004, microprocessor design focused on multicore scaling—increasing the 

number of cores per die in each generation—as the primary strategy for improving 

performance. These multicore processors typically equip multiple memory 

subsystems to improve data throughput. In addition, these systems employ 

heterogeneous processors such as GPUs and heterogeneous memories like 

non-volatile memory to improve performance, capacity, and energy efficiency. 

With the increasing volume of hardware resources and system complexity 

caused by heterogeneity, future systems will require intelligent ways to manage 

hardware resources. Early research to improve performance and energy efficiency 

on heterogeneous, multi-core, multi-memory systems focused on tuning a single 

primitive or at best a few primitives in the systems. The key limitation of past 

efforts is their lack of a holistic approach to resource management that balances 

the tradeoff between performance and energy consumption. In addition, the shift 
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from simple, homogeneous systems to these heterogeneous, multicore, 

multi-memory systems requires in-depth understanding of efficient resource 

management for scalable execution, including new models that capture the 

interchange between performance and energy, smarter resource management 

strategies, and novel low-level performance/energy tuning primitives and runtime 

systems. Tuning an application to control available resources efficiently has 

become a daunting challenge; managing resources in automation is still a dark art 

since the tradeoffs among programming, energy, and performance remain 

insufficiently understood. 

In this dissertation, I have developed theories, models, and resource 

management techniques to enable energy-efficient execution of parallel 

applications through thread and data management in these heterogeneous 

multi-core, multi-memory systems. I study the effect of dynamic concurrent 

throttling on the performance and energy of multi-core, non-uniform memory 

access (NUMA) systems. I use critical path analysis to quantify memory 

contention in the NUMA memory system and determine thread mappings. In 

addition, I implement a runtime system that combines concurrent throttling and a 

novel thread mapping algorithm to manage thread resources and improve energy 

efficient execution in multi-core, NUMA systems.  

In addition, I propose an analytical model based on the queuing method that 

captures important factors in multi-core, multi-memory systems to quantify the 

tradeoff between performance and energy. The model considers the effect of these 

factors in a holistic fashion that provides a general view of performance and 

energy consumption in contemporary systems.  

Finally, I focus on resource management of future heterogeneous memory 

systems, which may combine two heterogeneous memories to scale out memory 
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capacity while maintaining reasonable power use. I present a new memory 

controller design that combines the best aspects of two baseline heterogeneous 

page management policies to migrate data between two heterogeneous memories 

so as to optimize performance and energy. 
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 1 

 

 

 

As of 2004, the microprocessor moved to multicore scaling—increasing the number of 

cores per die each generation—as its primary strategy for improved performance. Multicore 

processors can achieve higher computing throughput with adequate power consumption [22, 

74], although the frequency of a multicore processor may be lower than that of a serial 

execution processor. Many in the microprocessor industry believe that this exponential 

multicore scaling will continue into the hundreds or thousands of cores within a single chip. 

For example, Intel introduced 48-core MIC architecture [8], the Cray XMT [143] system used 

128 lightweight stream cores in a single chip, and the Tilera TilePro64 [10] system built 

64-core on chip with a mesh on-chip network.   

These multicore processors usually equip multiple memory subsystems to improve the 

data throughput. Non-uniform memory access (NUMA) is a typical multi-memory design 

used in these systems, where the memory access latency depends on the memory location 

relative to the core/processor. Under NUMA, a processor can access its local memory faster 

than non-local memory.  

More recently, many in the research community and industry have discussed the 

introduction of heterogeneity to processors and memory systems to improve computation 
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throughput and energy efficiency. Computing systems have started to include other 

heterogeneous computing accelerators for special-purpose tasks. The most dominant is the 

graphics processing unit (GPU), which was first intended to carry out graphics computations 

in parallel. Over time, GPUs have become more general, allowing them to be applied to 

general-purpose tasks with remarkable power efficiency. The Intel MIC is another example of 

heterogeneous computing; its architecture utilizes a high degree of parallelism in smaller, 

lower-power lower-performance Intel processor cores. It communicates with the CPU through 

a high-speed PCI bus. The result is improved performance on highly parallel applications. In 

addition, people also explore the hybrid use of traditional DRAM and emerging Non-Volatile 

Memory technologies, like phase-change memory (PCM) [36], STT-RAM [5], and 

memristors [7] to improve performance scalability, capacity, and energy efficiency.  

With the increasing number of hardware resources and greater system complexity due to 

heterogeneity, future systems need more intelligent ways to manage hardware resources. 

Early studies geared toward improving performance and energy efficiency in these 

heterogeneous multicore, multi-memory systems focused on tuning a single or a few 

primitive(s) in the system. The key limitation of past research was a lack of holistic 

methodologies and resource management approaches to manage the tradeoff between 

performance and energy consumption. In addition, the shift from simple, homogeneous 

systems to these heterogeneous, multicore, multi-memory systems requires in-depth 

understanding of efficient resource management for scalable execution, including new models 

to capture the tradeoff between performance and energy, smarter resource management 

strategies, and novel low-level performance/energy tuning primitives and runtime systems.   

In this chapter, we discuss the background for the research conducted in this dissertation. 

In particular, Section 1.1 discusses the challenges and defines the problems that we attempt to 

address concerning heterogeneous, multicore, memory-memory systems. Section 1.2 
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discusses the research objectives. Section 1.3 summarizes the contributions that we make in 

this dissertation. Finally, Section 1.4 outlines the organization of the full dissertation. 

 

 To exploit the increasing of the number of cores in multicore systems, applications, 

programming languages and operating systems, we need to deal with parallel execution for 

processor throughput gains. Parallel programming is challenging: Programming for 

performance and energy efficiency is still a dark art, since the tradeoffs between performance 

and energy are not well understood. The tradeoffs between energy efficiency and performance 

that were well investigated in relation to serial processors in the 1990s have become more 

difficult to analyze in the multicore era due to the exponential increase in hardware resources 

and the complexity of computing systems. The community has spent over two decades trying 

to make the execution more efficient through the use of sophisticated memory hierarchies in 

giga- and tera-scale systems by improving data locality, and thereby lowering average 

memory access and bandwidth in our programs. The community has learned that efficient 

programs leverage small, fast caches close to the executing threads. We have also learned that 

minimizing the number of data communications between threads and the latency of those 

transmissions typically improves performance and energy. These design principles that were 

developed in the last two decades must be adapted to the heterogeneous multicore, 

multi-memory execution paradigm. However, many questions on how to design multicore, 

heterogeneous, multi-memory systems are still open and widely debated. In this section, we 

discuss two challenges that are critical for high performance and energy-efficient execution in 

multicore, heterogeneous, multi-memory systems. 
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Today, multicore processors are the fundamental elements for large-scale 

high-performance systems. One of the most significant challenges for designing highly 

scalable parallel applications for larger-scale systems is a growing gap between the need for 

performance and the limits of the power envelope [70, 173]. A DARPA-commissioned report 

recommends a power of 20 megawatts for exascale systems [32]. However, several of today’s 

most powerful supercomputers, armed with multicore nodes on the TOP500 List [14], require 

close to 15 megawatts of peak power. The power wall is already being reached by current 

petaflops systems (e.g., China’s Tianhe-2 (MilkyWay-2)’s power requirement is at 17.8 MW 

[14]). Increasing the scale of HPC systems to improve computing throughput leads to serious 

reliability concerns for such systems due to heat emissions caused by high power 

consumption.  

The energy consumption of the main memory system has also been growing [92, 114] 

due to emerging big data and HPC applications, which require a large amount of main 

memory bandwidth and capacity. Nowadays, memory sub-systems account for up to 40% of 

system energy [92]. This has become a new challenge for memory management using 

traditional DRAM technologies due to the limitations of high static power. Many people in 

the research community have begun to discuss the introduction of heterogeneity to the main 

memory to address this problem. They explore the hybrid use of traditional DRAM and 

emerging NVRAM technologies to improve performance scalability, capacity, and energy 

efficiency in the main memory systems. 

To alleviate the power/energy crisis, the US Department of Energy has challenged the 

research community to build a supercomputer capable of exascale computations using less 

than 20 MW of power by the year 2022 [187]. To achieve this goal, the new systems must 

achieve a 1,000-fold performance improvement over current petaflops systems with only a 
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10-fold power budget [6].   

Researchers have proposed novel software and hardware techniques to decrease power 

and energy consumption. The hardware optimization techniques include power capping [115], 

turbo/hyper-threading power states [41], and power configuration and power management in 

processor and memory sub-systems [22, 33, 58, 87]. These novel techniques drive new 

energy-efficiency achievements in the new computing system designs. On the other hand, 

software techniques provide several benefits for power/energy control schemes. First, they 

can leverage system-level information to aid decision making in their power/energy control 

schemes. For example, operation systems can provide a software stack to collect system-wide 

execution signatures, including processor and memory utilizations, frequency, and power 

states to assist the power/energy control schemes. They can also collect specific workload 

characteristics to optimize energy consumption. Second, software techniques provide more 

flexibility than hardware solutions. Software approaches can quickly adjust power control 

schemes, prediction models, and power budget plans to meet the needs of different system 

design requirements. In addition, a software approach can exploit the hardware control 

components, such as dynamic voltage and frequency scaling (DVFS) [100, 162, 200], thermal 

control [124], and power states [41] to control the energy consumption for computation. 

Unfortunately, these existing energy-aware approaches are not directly applicable to 

emergent heterogeneous, multicore, multi-memory systems. Therefore, in this dissertation, we 

will adapt existing techniques and create new ones to improve the energy efficiency of 

emergent complex systems with increasing heterogeneity. 

 

Efficient hardware resource utilization is the key for scalable execution. On a multicore 

system, concurrent thread execution needs to share hardware resources, such as the last level 

cache, high-speed bus, and off-chip memories, to improve utilization. Higher resource 
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utilization improves collective performance, reduces the cost of hardware design, and even 

mitigates heat dissipation. However, resource sharing in multicore systems imposes new 

design challenges. In particular, more hardware resource sharing in concurrent execution can 

lead to performance variation and unwelcome energy waste. Resource management becomes 

more challenging in the multicore era due to the increasing number of cores and main 

memory devices (e.g., DIMMs, channels). 

We use the following simple example to explain this problem. We ran the SP application 

from the NAS Parallel Benchmarks on an AMD 16-way, multicore, NUMA system. The SP 

application ran multiple times using 8 concurrently executing OpenMP threads with 85 

different thread-to-core mappings. We analyzed 85 different mappings on 9 concurrent 

execution regions of the SP application. Figure 1.1-1 shows the performance variance of the 

best, the worst, and the system default mapping. We found a performance difference between 

the best and the worst mapping of up to 45%. In addition, we found that the default system 

mapping did not guarantee the best performance. Compared to the default system mapping, 

the best mapping from the 85 selected mappings was 18% faster. However, the total number 

of mappings is 4.29*10
9
 (8 threads mapping to 16 cores). In this small example, we still have 

a large unexplored space to find the optimal solution, not to mention that it does not consider 

the data distribution in the memory system. Once the performance becomes unpredictable, 

violations of the system’s performance requirements may occur. 
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Figure 1.1-1 Performance variance of best, worst and default mapping among 85 

mappings of the SP.A benchmark.  

Another challenge arises in operation systems. Traditionally, operating systems have been 

responsible for managing shared hardware resources—processor(s), memory, and I/O. 

However, traditional operating systems lack mechanisms to detect hardware resource conflict 

due to concurrent execution. Hence, conventional operating system policies do not have 

adequate control over hardware resource management. To make matters worse, it is still not 

clear to the research community how multicore, multi-memory systems affect performance 

and energy. In terms of future applications, this is becoming a serious issue in the execution, 

as resource management mechanisms and policies are no longer adequate for future multicore, 

multi-memory systems. 

Finally, it is not clear how heterogeneity will affect future resource management systems. 

While computing systems have started to include GPUs to accelerate computation tasks, how 

to distribute tasks between CPUs and GPUs has become a difficult design question for 

operating systems [189]. A task management system in the OS needs to have adequate tools 

to decide whether to off-load tasks from the CPU to the GPU, including explicit cost models 
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and migration schemes. Today, most OSs do not have adequate tools to manage these tasks, 

creating a challenge for programmers. The same situation is emerging for heterogeneous 

memory systems. While big data and HPC applications drive the demand of the memory 

capacity, system designers must consider whether to add another non-volatile memory layer 

to traditional DRAM. However, it is still unclear to the research community how pages can be 

managed in heterogeneous memory systems that combine traditional DRAM and emerging 

NVRAM technologies to obtain optimal performance or energy [111]. 

 

This dissertation aims to create a new energy-aware hardware resource management 

framework for future heterogeneous, multicore, multi-memory systems. It includes the 

development of efficient resource control schemes, building models that capture essential 

features of hardware resources, workload characteristics that affect performance and energy, 

and efficient management policies that will improve performance and energy.  

The objectives of this research are as follows: (1) to develop an energy-aware, resource 

automation software framework that automatically identifies the optimal resource 

configuration based on hardware settings, workload characteristics, and execution signatures; 

(2) to identify, study, and build cost models for performance and energy problems that are 

related to resource sharing, contention, and throttling in multicore, multi-memory 

architectures; and (3) to build memory energy management strategies that extend the 

scalability for future heterogeneous memory systems and overcome the limitations of 

traditional DRAM technologies. 

This dissertation consists of three parts. In the first part, we implement an automation 

framework to manage threads for performance and energy optimization. In the framework, we 

propose a memory-centric performance model to dynamically manage the number of threads 

used in a task. We also propose a thread-mapping algorithm to redistribute threads. In the 
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second part, we propose energy-aware models that capture dominating factors of hardware 

resources that affect system performance and energy in multicore, multi-memory systems. 

Finally, in the third part, we propose new memory management policies in the memory 

controller that control the hybrid use of DRAM and emerging NVRAM technologies. 

 

In this subsection, we discuss the particular research contributions of this work. Each will 

be presented in more detail in subsequent chapters of this dissertation. 

 

Non-uniform memory access (NUMA) is now the dominant memory system architecture 

for multiprocessors. NUMA has been a leading design paradigm in scalable, cache-coherent, 

multi-processor architectures since the 1990s.  

Optimizing applications for performance and energy efficiency on NUMA architectures 

is increasingly challenging because more cores are being packed on each processor. While a 

significant body of prior work has treated NUMA as an issue of data distribution and 

migration assuming a stationary mapping of threads to cores [26, 133, 150, 151, 184], we 

consider the problem from the opposite direction: Given a distribution of data among memory 

nodes, what is the optimal mapping of threads to cores? In addition to the challenges of 

generating optimal static mapping of threads to cores, previous techniques to optimize power 

and performance dynamically on unified memory access (UMA) systems does not necessarily 

extend to NUMA systems. Earlier work [54, 116] has shown that dynamic concurrency 

throttling (DCT) is a viable optimization technique for performance and energy efficiency. 

DCT amounts to modifying (throttling) the number of threads to avoid oversubscribing 
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hardware resources, such as shared memory bandwidth. DCT is beneficial when the degree of 

available algorithmic parallelism in a code region is less than the maximum number of cores 

available on the hardware. In a NUMA system, any attempt to throttle concurrency after 

execution begins will redistribute the computation between cores, thereby forcing extraneous 

cache misses, remote memory accesses, and contention. Prior work on DCT has overlooked 

this problem. In our work, we consider the optimization problem for multicore NUMA 

systems from the following three perspectives: (1) finding an optimal degree of concurrency, 

(2) mapping threads to cores to reduce remote accesses per core, and (3) minimizing 

contention on memory controllers.  

We present DyNUMA, a framework for dynamic optimization of programs on multicore 

NUMA architectures. DyNUMA is implemented in a runtime system to improve both 

performance and energy efficiency. The core of DyNUMA is a novel memory-centric 

performance model. The model captures the nonlinear and interacting effects of concurrency, 

thread mapping, and data placement using a hardware–artificial neural network (ANN). 

DyNUMA uses an ANN model in conjunction with critical path analysis [11] to predict 

optimal concurrency and thread mapping, assuming static data placement.   

This first part of the research makes the following contributions: 

1. A flexible and portable framework, DyNUMA, to address the multidimensional 

problem of concurrency control and thread-to-core mapping on NUMA systems. 

DyNUMA dynamically controls the number of threads and thread mapping with 

minimal contention during the execution to optimize the performance and energy; and 

2. A novel memory-centric, nonlinear performance model for NUMA architectures that 

captures the effects of concurrency, data placement, and memory contention on 

system performance. The model leverages the topology of the ANN to map the 

multicore NUMA architecture, and thus precisely captures the nonlinear performance 

effects of NUMA systems. 
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Ideally, as the number of cores and memory capacity increase, the consumption of 

additional power should result in a substantial increase in performance. In reality, an 

inadequate increase in hardware resources could have an adverse effect on performance and 

worsen energy efficiency.  

In previous work, researchers focused on altering CPU and memory resources based on 

workload demand. These techniques include DCT [52, 116, 178], memory throttling (e.g., 

voltage/frequency scaling of DRAM) [58, 62, 214], and memory parallelism control [61, 130, 

131, 213]. While these methods show promise in isolation, emergent systems must consider 

their combined interactive effects on energy efficiency. For example, our early research only 

focused on thread management using DCT and a thread-mapping scheme, without 

considering effects resulting from the memory system, such as the impact of the memory 

frequency and the number of memory nodes. To address this problem, in the second part of 

the dissertation, we propose an analytical model of memory performance that uses queuing 

theory to capture dominating factors of hardware resources that affect system performance 

and energy in multicore, multi-memory (NUMA) systems in a holistic fashion; these include 

thread-level parallelism (TLP), memory-level parallelism (MLP), and memory controller 

frequency. We use the resulting model to study the combined effects of DCT, memory 

throttling, and memory frequency on performance and energy, and address how to efficiently 

manage these hardware resources (i.e., threads, memory nodes, and memory frequency).  

The second part of the research makes the following contributions: 

 Our model predicts the application of CPI as a holistic function of TLP, MLP, and 

memory frequency to estimate the system performance. Furthermore, our models 

show that the memory frequency, MLP, and TLP have interacting effects on 
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performance and energy. The effects of performance and energy cannot be considered 

in isolation; and 

 We demonstrate that the model-guided optimization can improve energy consumption 

up to 40% for applications with high demand for memory bandwidth with proper 

control of resources including CPU cores, memory DIMMs, and memory frequency.   

 

The memory wall has long been a computing bottleneck, and this has been intensified by 

the introduction of multicore processors. While the primary concern of the memory wall 

focuses on only bandwidth and latency, a new ―power wall‖ challenge has emerged for 

scaling out memory capacity within a reasonable power budget. When big data and HPC 

applications drive the demand for memory capacity, traditional DRAM technology with high 

static power will unfortunately become less effective, and will not scale in terms of density 

and capacity. 

Previous work [66, 108, 144, 158, 159, 196, 201, 209] has proposed that the power wall 

problem can be addressed using heterogeneous memories by exploiting DRAM for 

performance and emerging NVRAM memory technologies for capacity and energy efficiency. 

This work has proffered two basic policies to control the trade-off between delivering 

performance and improving energy consumption using two basic types of memory 

organization, namely PCache and HRank. PCache controls a hierarchical, inclusive system, 

while HRank controls a flat, exclusive system. We demonstrate that both PCache and HRank 

policies only exhibit good performance and energy for certain workloads. 

In the third part of this dissertation, we propose a new memory controller (MC) design, 

namely HpMC, which employs the hybrid use of the PCache and HRank policies to manage 
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memory pages and deliver optimal performance or energy based on system demand. Our 

research proposes a new memory controller design that manages memory resources (i.e., 

memory pages) in future heterogeneous memory systems.  

The third part of this research makes the following contributions: 

 We demonstrate via simulation that previous heterogeneous memory management 

policies exhibit good performance and energy only for certain workloads;  

 We propose the first hybrid policies memory controller for heterogeneous memory 

systems, and our study demonstrates that better performance and energy can be 

achieved through the hybrid use of these policies via a well-designed MC; and 

 The results show that the HpMC guarantees the delivery of optimal energy compared 

with its HM competitors, and improves energy consumption from 13% to 45%, while 

providing almost the same bandwidth as and larger capacity than the DRAM system.  

 

In Chapter 2, we discuss related work and present the background for the research 

conducted in the dissertation. Specifically, we present literature surveys for the following 

seven different topic areas: the performance models for multicore systems; DCT techniques 

and limitations for performance and energy optimization; performance models and 

optimization for memory subsystems; power modeling and optimization for memory 

subsystems; energy–aware management on multicore, multi-memory systems; data 

management for heterogeneous memories; and phase change memory optimization 

techniques. 

In Chapter 3, we describe our research on improving performance and power efficiency 

for NUMA systems through thread management. We present an automation framework that 

adopts an ANN model and a thread-mapping algorithm to dynamically manage the number of 

threads and thread mapping. 
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In Chapter 4, we present novel analytical models for performance and energy efficiency 

for NUMA memory systems using queuing methods. The models consider important system 

factors such as TLP, MLP, and memory frequency. The models consider the combined 

interactive effects of these factors on system performance and energy, and overcome the 

limitation of previous works, where they only considered isolated effects. We investigate and 

evaluate the models on multicore NUMA platforms. We show the significant energy benefits 

brought from concurrency throttling, MLP throttling, and DFS.  

In Chapter 5, we present a new memory controller design that combines the best aspects 

of two baseline heterogeneous memory management policies to optimize performance and 

energy. We validate our memory controller design in a simulation framework against real 

hardware on two state-of-the-art HPC servers. We investigate the effect of two policies on 

performance and energy using HPC workloads and analyze the effect of spatial and temporal 

locality on energy consumption in relation to both policies. Based on our locality analysis, we 

propose a new energy-aware hierarchical memory management policy that dynamically 

switches between the two policies to optimize energy.  

Finally, in Chapter 6, we present a brief summary of the research done in this dissertation 

and future work to be carried out. 
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This chapter focuses on the background of the research and the literature survey on work 

attempting to improve the efficiency of parallel applications executed on heterogeneous, 

multicore, multi-memory systems. We will review numerous performance speedup models 

and summarize related power/energy-saving techniques and profiling methods. Since our 

models will approximate memory performance and power, we will also review memory 

performance and power models and related optimization techniques. We will review different 

energy-aware approaches on multicore, NUMA memory systems. Finally, we will discuss 

techniques to manage heterogeneous memory system and optimization approaches for 

phase-change memory. 

 

As we enter the multicore and exascale era, we are at a pivotal point in the computing 

world. Computing vendors have designed chips with multiple processor cores. These 

upcoming chips are called chip multiprocessors, multicore chips, and many-core chips. 

Optimizing multicore performance will require further research in both extracting more 
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parallelism and making sequential cores faster. For this reason, we need cost models that can 

capture the performance bottlenecks of multicore chips.  

 

Amdahl’s law estimates the speedup of parallel design [24]. A number of researchers 

have proposed extended models based on Amdahl’s law, such as Gustafson’s law [82], 

Karp-Flatt metric [106], and models for multicore chips [30, 47, 48, 183, 203, 206]. Amdahl’s 

law is based on the assumption of a fixed problem size. In contrast, Gustafson’s law says that 

a larger workload can be solved within a fixed time when more parallel processors are given. 

The Karp-Flatt metric introduced the notion of load-balance and synchronization overhead, 

addressing the inadequacies of Amdahl’s law and Gustafson’s law. The metric can be used as 

a tool to measure the efficiency of the parallel execution of a given program. 

Analytical models considering on-chip networking: Latency in networks-on-chips 

(NoCs) has become one of the critical factors in performance because more and more cores 

are being integrated into single chips. Xiaowen et al. [203] proposed a parallel speedup model 

extending from Amdahl’s law. They considered the effects of network topology, network size, 

and traffic model, as well as the ratio of computation and communication. This analytical 

model can guide architects and programmers to improve the efficiency of parallel processing 

by reducing network latency and identifying the bottleneck. 

Analytical models considering critical section and synchronization: Eyerman et al. 

[67] pointed out that parallel performance is not only limited by sequential codes, but is also 

fundamentally limited by synchronization through critical sections. They extended Amdahl’s 

model to include critical sections, dividing critical sections into sequential and parallel parts. 

Their results showed that efforts to exclude critical sections can yield substantial speedup. 

Moreover, Chen et al. [43] discussed the impact of critical locks on performance in multicore 

systems. Their method identifies the critical sections appearing on the critical path, and 
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quantifies the performance impact of critical locks on the critical path. Both of these studies 

tried to identify the synchronization overhead, which is not considered in Amdahl’s law. 

Analytical models considering memory: Many applications cannot scale up to meet 

Amdahl’s law or Gustafson’s law due to memory constraints. Sun and Ni proposed the 

memory-bounded speedup model [181, 182], which is known as Sun and Ni’s law. This is a 

generalization of Amdahl’s law and Gustafson’s law. Moreover, Minjang et al. [109] 

estimated speedup by analyzing the cycles per instruction (CPI) on multicore systems. They 

approximated the on-chip and off-chip CPIs. Off-chip CPI is estimated by CPU memory stalls 

per last level cache miss.    

Analytical models considering an asymmetric, heterogeneous design: There is also a 

body of researchers focusing on heterogeneous, asymmetric multiprocessors [30, 81, 91, 119, 

135, 136, 165, 166, 190]. Hill et al. [91] applied Amdahl’s law to asymmetric multicores, 

concluding that asymmetric designs offer greater potential speedup than symmetric ones. 

However, the scheduling challenge needs to be well addressed in order to obtain a speedup. 

Meanwhile, Tong et al. [119, 190] explored the performance of asymmetric multicores using 

asymmetric schedulers. They used CPU clock modulation to quantify performance on an SMP 

and NUMA system.   

Analytical models considering DVFS: Due to the widely used DVFS technique, some 

researchers have discussed the effects related to CPU frequency, performance, and energy [75, 

100, 162, 200]. The researchers in [100, 200] assumed a per-core DVFS knob to be available 

and evaluated several different policies for a given power budget and performance estimation. 

Ge et al. [162], [88] developed analytical models to approximate performance and energy cost 

under different frequencies for scientific workloads on multicore systems.  

 

Kismet [101] is a dynamic profiler that provides estimated speedups for a given serial 
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program using binary instrumentation. It predicts speedup through critical path analysis by 

calculating self-parallelism for each parallel region. The overhead of this approach is 

significant. It shows 100x slowdowns due to the memory instructions instrumented. 

Meanwhile, Intel Parallel Advisor [9] collects timing information from an instrumented serial 

code and uses the information to build a dynamic parallel-region tree model to estimate the 

speedup. 

Most existing works focus on the speedup with other factors, such as chip networks, 

critical sections, asymmetric task scheduling, and frequency scheduling, without considering 

memory effects. Some papers [101, 109, 181, 182] considered memory behavior in their 

model, but only assumed UMA memory systems, without considering NUMA effects. 

 

With the popularity of multicore architecture, many researchers developed concurrency 

throttling techniques to optimize multithreaded codes on multiprocessor systems. Voss et al. 

[195] carried out one of the earliest efforts to examine parallelism on shared memory 

multiprocessors. They proposed the notion of adaptive serialization, which takes critical 

sections and synchronization of parallel regions into consideration. They compared the 

measured parallel loop time and the predicted serial time to see if it would be useful for 

parallelization. The research only focused on using either one thread or a maximal number of 

threads, without considering the possibility of concurrency in between. Furthermore, Zhang et 

al. [211] proposed a self-tuning OpenMP loop scheduler designed to react to the behavior 

caused by inter-thread data locality. Zhang et al. [212] used a hardware-counter approach. 

Their scheduler samples the performance events directly from parallel loops and uses an 

off-line decision tree to decide how to schedule the loop to achieve load balance. These 

authors also predicted the best number of threads of a given parallel region instead of 

predicting performance. In addition, Suleman et al. [180] proposed a feedback-driven 
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threading (FDT) framework to dynamically control the number of threads using runtime 

information. This system predicts the optimal number of threads by capturing the amount of 

data synchronization at execution time to mitigate bus saturation. The work took two factors 

into consideration, namely the amount of data synchronization and the bus bandwidth, but the 

researchers did not consider the cache contention on shared memory multiprocessors. Finally, 

Li et al. [118] mixed concurrency throttling and DVFS techniques to cap power consumption 

while maintaining a certain level of performance. The work focused on searching the 

configuration space and conducting empirical searches to reduce the total number of 

executions needed to be adapted. However, the experiments were based on simulation and 

overlooked the impact of overhead when changing from one configuration to another. 

There are other compiler-based approaches [84, 104] based on dynamic feedback. They 

automatically determine the optimal number of threads for each parallel loop in the 

application at run time. They use a threshold method to determine how many threads they 

need to use in each parallel region; however, this approach does not exploit any runtime 

information to make better decisions, and only returns suboptimal solutions. 

Curtis-Maury et al. [55, 174] used a machine learning approach to identify the 

concurrency configurations of SMP multiprocessors. Specifically, they used ANNs to predict 

performance and energy consumption under different concurrencies. ANNs greatly reduce the 

time in the training phase, which decreases the burden on the end user. 

Most existing works leverage concurrency throttling based on performance prediction 

based on compiler time and runtime information; however, these works do not take the 

underlying memory topology into consideration. We extend previous work on DCT by 

leveraging the CPU and memory architecture topology to predict more accurate performance.   
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There has been a great deal of research focused on identifying memory as a future 

performance bottleneck. In the early 1990s, researchers concluded that memory bandwidth 

will limit the scalability of future systems, and predicted that future machines are likely to be 

memory bandwidth–bound due to the speed gap between processors and memory. This gap is 

also called the ―memory wall‖ [140]. We first review several bandwidth and latency models, 

and then look at different techniques to optimize memory performance at different levels of 

the hierarchy.  

Bandwidth and latency: Molka et al. [145] analyzed the memory system performance of 

Intel Nehalem in detail. In later work, Hackenberg et al. [83] compared the performance of 

Intel Nehalem with AMD Shanghai. Their analysis was based on using micro-benchmarks to 

measure the latency and bandwidth between different locations in the memory subsystem 

while considering the impact of cache coherency. Yang et al. [205] studied the effect of cache 

blocking and thread placement on multicore shared memory systems. They quantified 

execution time, but did not consider cache coherency traffic. Mandal [131] modelled the 

memory bandwidth and memory access latency of commercially available systems as a 

function of memory concurrency. However, extending this model to multiple types of 

memory controllers is difficult because the different rates of requests can only be produced 

through proprietary manipulation of the on-chip memory controller and interconnects. Other 

benchmarks measure the memory bandwidth but disregard most architectural details; one 

example of this is the well-known STREAM benchmark [137]. 

Cache partition: Tam et al. [185] addressed cache contention through software-based 

cache partitioning, similarly to many other researchers [45, 121, 123, 210]. In this approach, 

the cache is divided among all applications running on CPU using the page coloring technique. 
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Each application has private cache lines that the physical memory can map only into the 

private portion of the cache. The size of the reserved portion of the cache is determined by the 

application’s reused distance profile. The reused distance profile is very similar to the 

stack-distance profile, which is approximated online using hardware counters [185]. The 

principle of cache partitioning is to isolate workloads of applications that harm each other. 

This approach has two limitations, as follows: (1) it requires customization of the complicated 

virtual memory system on the OS; and (2) it requires additional copy operations when the size 

of the cache partition changes or is reallocated. Task scheduling is not subject to these 

drawbacks.  

Task scheduling: There is a large body of research focused on cache-aware and 

NUMA-aware task schedulers [69, 79, 129, 153, 161, 167, 175, 219]. Symbiotic job 

scheduling [175] is a cache-aware method for co-scheduling threads on SMT machines that 

minimizes resource contention. This method uses a brute-force method by trying a large 

number of thread assignments, picking up the assignment that yields the best IPC. Majo et al. 

[129] proposed a NUMA-aware task scheduler by measuring LLC pressure and NUMA 

penalty. Their algorithm requires application parameters that must be obtained online, which 

prevents dynamic adjustments to improve performance. Moreover, Zhuravlev et al. [35, 219] 

argued that LLC misses are not the only factor causing performance degradation; rather, the 

memory controller and pre-fetch mechanism are also important. They proposed an online task 

scheduler, but they still used the LLC miss rate as a metric to measure the extent of local 

contention. McCudy et al. [139] argued that NUMA problems can be identified with the help 

of hardware counters that track remote memory references. These crossbar events can now be 

counted in modern AMD and Intel architectures. We find that LLC misses are not the only 

factor in performance degradation, so we use the memory request event mentioned by 

Blagodurov et al. [35] as the metric to capture NUMA performance degradation.  

Page migration: Page migration techniques improve performance by moving data to 
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achieve a tight coupling of processors with resources. Chandra et al.’s [40] work represents 

one of the earliest efforts [31, 132, 134, 149, 168, 193] to examine the effects of OS 

scheduling and page migration policies on the performance of cache-coherent shared-memory 

servers. Their automatic page migration approach leverages TLB miss information to 

determine whether to migrate. In addition, Terboven et al. [186] extended the NUMA page 

placement policy called next touch to migrate pages that are frequently accessed remotely. 

Ribeiro et al. [160] used data access patterns to guide memory placement on NUMA systems, 

while Nikolopoulos et al. [150, 151] proposed a series of user-level dynamic page migration 

approaches.  

Thread migration: Broquedis et al. [71] introduced a runtime system to optimize 

thread-to-data affinity using a BubbleScheduler scheme. BubbleScheduler remaps threads by 

employing a capacity metric to identify the memory nodes with the largest concentration of 

thread data. Threads are then migrated remotely to the identified node to maximize data reuse 

and minimize data transfer costs. Although this approach considers affinity, the focus is on 

modeling and optimizing data movement with threads tightly coupled to data. Despite the 

focus on minimizing data movement, as threads and cores scale, the need to migrate and the 

amount of data to migrate increase substantially.  

Data placement: To the best of our knowledge, Awasthi et al. [25] were the first 

researchers to consider the problem of data placement with multiple memory controllers. 

They estimated performance degradation caused by congestion in a single memory controller, 

and found that the attribute costs of queuing delay and hit rates decreased in DRAM row 

operations. Blagodurov et al. [34, 35] argued that a middleware of shared resources must be 

extended to NUMA systems. They generated a detailed evaluation model of shared resource 

contention in multicore systems. Although they considered NUMA factors, they do not 

account for issues related to fairness of the queuing system in their system.  

Memory controllers: We turn the discussion now to memory controller (MC) 
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optimization. There is a significant body of recent papers [21, 50, 51, 99, 112, 126, 127, 147, 

148, 192, 198, 208] examining multiple MCs in multicore systems. Loh [127] proposed a 

design that takes advantage of rich inter-die bandwidth in a three-dimensional (3D) memory 

chip. The memory 3D chip takes implements multiple MCs on chip that can quickly access 

several banks of DRAM simultaneously. The TilePro64 processor [4] uses multiple MCs on a 

single chip; all MCs are available via a mesh on-chip network. TilePro64 is one of the first 

commodity processors to use four on-chip MCs. Abts et al. [21] implemented different MC 

placements on a single chip processor to minimize the on-chip network traffic and controllers’ 

channel load. Moreover, Vantrease et al. [192] discussed the interaction between MCs and 

on-chip networks and proposed MC layout solutions to minimize network traffic. Some 

papers have discussed MC scheduler policies [147, 148, 208]. Kim et al. [208] proposed a 

memory-scheduling algorithm that improves system throughput while minimizing 

coordination among all MCs. Mutlu et al. [147, 148] considered schedulers on a single MC, 

observing that the prioritization of memory requests to carry out row operations can lead to 

long queuing delays for threads that are not intended to access open rows. They proposed a 

Stall-Time Fair Memory scheduler to distinguish two parties, namely those that need to access 

open rows and those that do not. They also proposed a batch scheduler based on age and 

services of requests to achieve fairness of access time. 

Most existing works model and optimize NUMA memory performance through 

quantifying bandwidth and latency. However, bandwidth and latency only partially explain 

the performance of applications. To the best of our knowledge, only a few models and 

optimization techniques estimate inclusive performance by considering the number of cores, 

bandwidth, latency, and NUMA effects and none of these are directly applicable to the 

heterogeneous multi-core processor and multi-memory configurations we explore. 
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Today’s system designer is concerned about power used by the main memory in the 

system. Whether it is calculating battery life for a portable application or determining the 

power supply for a server, an accurate power budget for memory is essential. Several power 

models regarding DRAM technology have been proposed. We discuss several major DRAM 

power models here. Micron Inc.’s model [12, 13] is used extensively; this model uses 

SDRAM datasheets and measured current and voltage values for an application’s behavior, 

such as page hit rates, to estimate the power consumption of a specific application. The model 

also provides some basic tools [13, 19] to calculate the system power consumed by the 

DRAM. The weakness of this model is that it needs accurate scaling of active/background 

components. In addition, it supports a close-page policy by default which is overly pessimistic 

compared to the normal case. 

Joo et al. [207] predicted power and energy based on energy coefficients and an SDRAM 

energy state machine that independently characterizes dynamic and static energy. They 

explored energy behavior of the memory systems by changing design parameters such as 

processor frequency, memory frequency, and cache configuration. Rambus Inc.’s DRAM 

model was proposed in 2010 [18]; this estimates power based on device-level SDRAM details 

and technology specifications using switching activity. The drawback of this model is that 

device details are only available from memory venders. 

 

Lowering DRAM frequency: Deng et al. [62] proposed MemScale, a scheme that 
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applies DVFS to the memory controller and DFS to memory bus and DRAM chips to save 

power and energy. This approach makes use of the OS’s memory policy to decide on 

DVFS/DFS modes based on current bandwidth needs. Moreover, David et al. [58] assessed 

memory DVFS techniques in a real system, emulating reduced memory frequency by 

changing timing registers and using an analytical model to compute power drop.  

Low memory power states: A body of studies has focused on how to utilize low power 

modes of DRAM, namely Rambus memories. Lebeck et al. [110] made use of page allocation 

policies to assist the OS and to complement the hardware power management. Their approach 

increases the chances that DRAM chips can be put into low power modes. Diniz et al. [65] 

proposed several techniques to limit consumption by controlling the power states of memory 

devices, as a function of the load on the memory subsystem. Specifically, they used 

optimization Knapsack algorithms to compute the optimal configuration of power states for a 

given power budget. Fan et al. [68] developed an analytic model that approximates the idle 

time of DRAM chips using an exponential distribution, and validated the model against 

trace-driven simulations. The trace-driven simulator processes instructions and data address 

traces of applications. However, the model ignores memory bus contention and the 

open/closed state of row operations in DRAM banks.  

Huang et al. [97] proposed a power-aware virtual memory system that can effectively 

manage the energy footprint of each process through virtual memory remapping. Li et al. [120] 

built a model to estimate performance loss of low power management and proposed 

performance-guaranteed low power management schemes for both memory and disks. Pandey 

et al. [194] explored the unique memory behavior of DMA accesses to aggregate DMA 

requests from different I/O buses together in order to maximize the memory low power 

duration.  

Capping temperature: Recent research has proposed techniques to limit peak power 

consumption or manage temperature. Lin et al. [124] proposed dynamic thermal management 
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(DTM) schemes to improve performance under the given thermal envelope. They proposed 

two schemes coordinating multicore and memory and adopted the clock gating and DVFS 

techniques for processor cores when memory was to be over-heated. Lin et al. further 

addressed the weakness of their previous study, namely the neglect of the CPU’s heat 

dissipation and its impact on DRAM memories [125].   

Other approaches: Delaluz et al. [60] proposed a compiler-directed and 

hardware-assisted hybrid approach to exploit low power models in memory. Moreover, Zheng 

et al. [213] proposed the mini-rank scheme, which adds a small bridge chip to each DRAM 

DIMM to break the DRAM ranks into multiple smaller mini-ranks. This approach increases 

the granularity DRAM access so that it can reduce the number of devices in a single memory 

operation to save power and energy. Hur et al. [98] used a history-based memory scheduler to 

manage power and energy. When additional DRAM power reduction was needed, they used a 

throttling approach to suppress DRAM activities by delaying the issuance of memory 

operations. 

Most of the existing memory power models assume that only one memory controller and 

one DRAM module exist in the system. Our memory power model is similar to that of Micron, 

but is extended to multiple memory controllers with multiple DRAM modules. This 

represents a natural extension of the NUMA topology. Our optimization approach is different 

from existing techniques: We consider the best number of memory nodes needed for specific 

applications and turn the unused memory nodes to low power states. 

 

Performance and power are critical design constraints in today’s HPC systems. Reducing 

power consumption without affecting system performance is a challenge for the HPC 
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community. There is a significant body of research focusing on middleware and runtime 

systems. In early works, researchers applied DVFS techniques to data centers, while power 

consumption became a critical issue for large commercial server farms [27, 33, 38, 57, 64, 93, 

218]. We introduce an instrumentation-based and transparent approach below. 

Instrumentation-based approach: To exploit energy savings, the system needs to 

identify the potential regions of codes that can reduce energy consumption. Several studies 

have used the instrumentation-based approach, which involves (1) source code 

instrumentation for performance profiling, and (2) deciding on an energy policy based on 

profiled information. Cameron et al. [37, 76] used PMPI to profile MPI communications and 

exploit CPU idling to save energy. Moreover, Hsu et al. [95] used binary instrumentation to 

profile and insert DVFS scheduling functions to improve energy consumption. Freeh et al. [72] 

used PMPI to time MPI calls and decide whether or not to apply DVFS. These approaches 

require manual instrumentation to detect the inefficient regions.  

Transparent approach: Several automated techniques have been proposed that are 

transparent to system users. Hsu and Feng [94] proposed the β-adaption algorithm to 

automatically adapt the voltage and frequency for energy savings at runtime. The user can 

specify the maximum allowed performance slowdown, and the algorithm will schedule CPU 

frequencies and voltages in such a way that the actual performance slowdown does not exceed 

what has been specified. Ge et al. [163] proposed CPU MISER, a performance-directed 

runtime system for power-aware computing. CPU MISER supports system-wide, 

application-independent, fine-grain DVFS. Moreover, it identifies several types of inefficient 

phases, including memory accesses, I/O accesses, and system idle under power and 

performance constraints. The researchers propose an accurate DVFS performance-prediction 

model that allows users to specify acceptable performance loss.  

Lim et al. [122] proposed a runtime scheduler that captures MPI calls to identify the 

communication regions in MPI programs. Wu et al. [202] made use of a 
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dynamic-compiler-driven runtime to identify the memory-bounded regions for power saving. 

Besides, CPUSpeed [16] adjusts power and performance modes based on the past processor 

utilization history. Tolentino et al. [188] proposed Memory MISER, which consists of a 

middleware in the Linux kernel that manages memory at device level and a userspace daemon 

that monitors memory demand systemically to control devices and implement energy and 

performance-constrained policies.  

Our approach is different from existing techniques in that it exploits the idle time of cores 

and memories by lowering power states. Our framework determines the resources (number of 

memory nodes, and cores) needed for specific applications according to the execution 

signature. Our framework also decides on the thread-to-data affiliation to minimize power and 

energy consumption.  

 

A few previous studies [108, 144, 197] considered combining NAND Flash and DRAM 

in the main memory to reduce the main memory power consumption. More recent works [39, 

44, 46, 73, 86, 111, 113, 158, 159, 209] have focused on using PCM to partially or completely 

replace DRAM because this has more promising performance characteristics than Flash. 

Since page migration is the key to energy conservation and performance for main memory 

systems, several studies have attempted to address this problem. In a related approach [97], 

the authors proposed an OS-controlled, power-aware virtual memory periodically to migrate 

pages based on the reference bits. Although previous OS-only approaches have been able to 

improve energy consumption, OS latency is still a major concern. Several 

hardware-controlled systems were studied in [66, 194]. Pandey et al. [194] exploited the 

access pattern in workloads by frequently clustering accessed pages in a small subset of the 

memory chips to improve locality and energy consumption. Dong et al. [66] implemented an 

address translation mechanism in the memory controller that can dynamically migrate data 
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between on-package and off-package memories. Such works simply looked at performance 

and energy through a single management policy; our work is different in that we explore the 

design space of combined policies to find the optimal solution.  

Two memory hierarchy designs have been discussed in previous work. The first [158], 

[66] organizes the first level of memory as the cache of the second level. The second level 

memory is managed by the OS while the first level of memory is managed by the MC. The 

second design [159, 209] manages both memory layers as a flat address space. The idea of 

this design is to keep hot pages (high utilization) in the first level of memory, while migrating 

cold pages (low utilization) to the second level of memory. The MC [159] implements a 

variation of the 16-LUR MQ algorithm to rank the hot and cold pages and migrate them 

periodically. The OS does not immediately see the page migrations; it only updates its 

mapping of virtual pages to physical frames periodically from the address table of the MC. 

 

Lee et al. [111] proposed a buffer organization approach to narrow the row buffer sets to 

mitigate high energy PCM writes and exploit locality to coalesce write operations to hide 

latency. They also proposed a partial-writes technique, which maintains a bookkeeper to track 

data modifications and dirty cache lines in the MC to reduce migration traffic. Qureshi et al. 

[154] proposed a PreSET technique that monitors the modification of cache lines. As soon as 

the cache line is dirty, the PCM system initiates a SET operation to the memory cells required 

by the dirty cache line prior to the write operation. Thus, the write operation for the dirty 

cache line only needs a shorter RESET operation. Moreover, Yang et al. [204] proposed a 

data-comparison write (DCW) approach. The DCW scheme performs a read operation before 

the write operation to identify the previously stored data in the selected PCM cell. The 

scheme then compares flipped bits between the stored data and overwrites the bits that change. 

Hay et al. [89] proposed several policies that schedule write operations to maximize 
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concurrent writes in the bank level based on the chip power budget and flipped bits 

information. This approach can improve both performance and energy consumption.  

 

   This dissertation focuses on improving the efficiency of high-performance systems with a 

particular focus on memory. To place our work in context, in this survey, we explored several 

related topics including system efficiency techniques (dynamic concurrency throttling, 

NUMA optimizations, data placement), techniques that further insight and understanding 

(performance models, power and energy models), and techniques that explore and exploit 

emerging systems (phase change memories, heterogeneous memories). 

    We also described some of our early findings that indicate performance and power have 

complex interactions not captured by the current state of the art techniques. For example, the 

interactive effects of resource contention on power and performance in caches, memory, 

network and I/O lead to inefficiencies in resource management at runtime. We also found that 

heterogeneity in memory and elsewhere in the system will play an important role for scalable 

and energy-efficient execution. 

    Our literature survey also indicates that performance and power models play a significant 

role in the prevailing runtime optimization techniques for thread scheduling, frequency control, 

memory throttling and data migration policies. This previous work motivates and forms the 

basis for the new modeling techniques proposed in this dissertation. In particular, our key 

observation is that existing models lack the detail needed to capture the interactive effects of 

power and performance. Nonetheless, we show that these interactive effects cannot be ignored 

and the effects grow with heterogeneity.  

    Thus, in the next chapter, we describe our techniques to improve the performance and 

power efficiency of thread management in NUMA systems by improving our ability to analyze 

the tradeoffs (using advanced modeling techniques) at runtime. This work in turn motivates our 
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exploration of new analytical models described in Chapter 4. In particular, we create analytical 

models that capture the interactive effects of power and performance more precisely than 

previous work. These models consider the interplay of several critical factors, including 

thread-level concurrency, memory-level concurrency, and memory frequency. In Chapter 5, we 

leverage our improved understanding of the relationship between power and performance and 

extend the concepts to heterogeneous memories. Specifically, we present a new memory 

controller design that combines the best aspects of two baseline heterogeneous memory 

management policies to manage page migrations efficiently and to optimize performance and 

energy.    
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Non-Uniform Memory Access (NUMA) is now the dominant memory system 

architecture for multiprocessors. NUMA has been the leading design paradigm in scalable, 

cache-coherent, multi-processor architectures since the 1990s. On a typical NUMA system, 

each processor has a local memory node accessible over dedicated links, while remote 

memory nodes are accessible via interconnects and through network interfaces. The latency of 

accessing the local memory node is markedly lower than the latency of accessing a remote 

memory node. More recently, non-uniform memory access latency is also present between 

cores in the same socket. The processor uses multiple memory controllers to serve its cores, 

with each controller connected to a different memory node. NUMA is therefore becoming 

pronounced also within the boundaries of a single chip. For example, the Tilera TilePro64 

processor has four memory nodes on the same die[4]. It implements a shared physical address 

space via a mesh interconnect between cores. When a core accesses the closest memory node, 

it incurs lower access latency than when accessing other memory nodes. Similar asymmetric 

access latencies also appear in the NVIDIA Fermi architecture [3].  
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NUMA improves system scalability by avoiding bottlenecks in the memory subsystem 

and by increasing the memory bandwidth available per core. With an increasing number of 

cores per processor, NUMA is becoming necessary for systems to scale. According to Top500 

statistics, over 90% of Top500 supercomputers are based on NUMA nodes [14]. Optimizing 

applications for performance and energy efficiency on NUMA architecture has been and 

remains challenging. While a significant body of prior work has treated non-uniform memory 

access as one of data distribution and migration, assuming a stationary mapping of threads to 

cores [26, 133, 150, 151, 184], we consider the problem from the opposite direction: given a 

distribution of data among memory nodes, what is the optimal mapping of threads to cores? 

As remapping of threads to cores is orders of magnitude faster than remapping data to 

memories, such an approach is worth considering as a dynamic optimization strategy. 

 

Application performance is highly sensitive to thread-to-core mapping. Figure 1.1-1 in 

Chapter 1 shows an example that quantifies performance variance due to different 

thread-to-core mappings on a NUMA system. We use SP from the NAS Parallel Benchmarks 

(class A, OpenMP version), running with 8 threads on a single node with 4 AMD quad-core 

processors. We enumerate 85 different mappings for 9 parallel regions in the benchmark. We 

observe a performance difference between the best and the worst mapping up to 45%. 

Compared to the default system mapping (Linux 2.6.32), the best mapping is 18% faster. 

Therefore, to optimize the performance and energy efficiency of applications on NUMA 

systems, we must determine the best mapping. However, the search space to determine the 

best mapping can be very large. 
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Figure 3.1-1 A 16-core NUMA architecture with 4 memory nodes 

 

For the 16-core NUMA architecture shown in Figure 3.1-1, a system similar to the 

smallest system that we use in our experiments, there are over 63 million possible mappings 

of threads to cores, each with different memory access latency and bandwidth available per 

core. The above calculation excludes the impact of shared caches and assumes statically 

placed data. If we consider these implications, the search space is even larger. 

 

In addition to the challenges of making optimal static mapping of threads to cores, 

previous techniques to optimize power and performance dynamically on Unified Memory 

Access (UMA) systems does not necessarily extend to NUMA systems. Earlier work [54, 116] 

shows that dynamic concurrency throttling (DCT) is a viable optimization technique for 

performance and energy efficiency. DCT amounts to modifying (throttling) the number of 

threads and the mapping of threads to cores used by parallel code at runtime, to avoid 

oversubscribing hardware resources, such as shared memory bandwidth. DCT is beneficial 

also when the degree of available algorithmic parallelism in a code region is less than the 

maximum number of cores available on the hardware. On a NUMA system, any attempt to 
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throttle concurrency after execution begins will redistribute computation between cores, 

thereby forcing extraneous cache misses, remote memory accesses, and contention. Prior 

work on dynamic concurrency throttling overlooks this problem. In fact, any attempt to 

migrate threads or data in the operating system for the purposes of throughput, power 

optimization, or reliability, suffers from the same problem. 

 

We consider a three-dimensional optimization problem for NUMA systems: (i) finding an 

optimal degree of concurrency, (ii) mapping threads to cores to reduce remote accesses per 

core, and (iii) minimizing contention on memory controllers. An optimal degree of 

concurrency avoids performance loss due to synchronization overhead, contention, or lack of 

sufficient algorithmic concurrency in the program. Reducing remote memory accesses 

reduces memory latency but may create contention due to oversubscribing of memory 

controllers.  

 

Any solution to the optimization problem needs to identify the enumeration and layout of 

cores with respect to memory controllers and memory nodes (a non-trivial exercise) and also 

needs to consider phase behavior in programs such as changes in concurrency, memory access 

patterns or data communication and synchronization patterns [54]. Unfortunately, standard 

linear regression cannot capture the complexities of such systems. Non-linear regression 

models (or logistic regression) are often very complicated in formulation and can require 

substantial computation resources to solve. 

 

To address these challenges, we created DyNUMA, a framework for dynamic 

optimization of programs on NUMA architectures through thread management. DyNUMA is 

implemented in the runtime system to improve both performance and energy efficiency. The 

core of DyNUMA is a novel memory-centric performance model. The model captures the 
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non-linear and interactive effects of concurrency, thread mapping, and data placement using 

an Artificial Neural Network (ANN). ANN’s are simpler to implement than logistical 

regression techniques requiring less formal statistical training. Furthermore, ANN’s excel at 

deriving structure from data samples. DyNUMA uses an ANN model in conjunction with 

critical path analysis [179] to predict optimal concurrency and thread mapping, assuming 

static data placement.  

 

 

DyNUMA optimizes OpenMP programs where parallelism is expressed with directives 

that delineate parallel regions. Each parallel region may enclose parallel loops, tasks, or 

nested regions. The design objective of DyNUMA is to select the best level of concurrency 

for each OpenMP parallel region and optimize thread placement to cores based on data 

locality so that the program is optimized for a given performance or energy-efficiency metric. 

The design of DyNUMA is based on the following characteristics: 

 Scalable: system is expected to execute on architectures with massive parallelism. 

 Architecture-aware: system should capture key architectural factors that affect 

performance and power. 

 Light-weight: system should incur low overhead to allow for online dynamic 

optimization. 

 Portable: system should be parameterized to allow for ease of porting to different 

NUMA architectures. 

 

DyNUMA implements a dynamic online predictor for the degree of concurrency and the 

thread-to-core mapping of each parallel region. The framework is illustrated in Figure 3.2-1. 
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Figure 3.2-1 Diagram of the DyNUMA system framework.  

 

The runtime predictor of DyNUMA includes two components. The first component is an 

architecture-aware, Artificial Neural Network Predictor (ANN) which predicts the degree of 

concurrency. The second component is a Thread Mapping Arbiter (TMA) which implements 

a deterministic algorithm that determines the thread-to-core mapping in linear time. 

DyNUMA assumes iterative programs where parallel regions are executed a number of time 

steps. This is common for many HPC applications. In the sampling phase, DyNUMA initially 

executes a program with maximal concurrency –using as many threads as the number of 

cores– for first k iterations. The number of k is equal to the number of memory nodes. The ith 

iteration samples threads’ execution signatures on the memory node i. The choice of k is 

determined by a limitation of current hardware counters, that is, hardware counters can only 

profile one memory node at a time. Overcoming this limitation can significantly reduce k. 

DyNUMA samples all execution signatures during these k iterations to derive predictions of 

the best concurrency and thread mapping of each parallel region using ANN. Afterwards, 

DyNUMA applies TMA to further improve data locality. We define an execution signature as 

a collection of three metrics: 

 IPC: Instructions per Cycle 
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 LMA: Local Memory Accesses per Cycle 

 RMA: Remote Memory Accesses per Cycle 

The runtime system collects the execution signature of each thread and transforms into a 

3-element tuple. Each tuple characterizes a thread with respect to the intensity of computation 

to memory operations while executing a parallel region. LMA and RMA values are determined 

by the location of a thread. DyNUMA maintains LMA and RMA per memory node for each 

thread. DyNUMA uses thread-level tuples coupled with thread mapping information and 

observed metrics as inputs to the two DyNUMA predictors – ANN and TMA. IPC, LMA and 

RMA from all threads are used in the ANN to navigate the search space and predict 

performance on all degrees of concurrency. If an application is processor-bound, IPC should 

be high while LMA and RMA should be low. In this case, the ANN tends to select higher 

concurrency. Conversely, a memory bound application is expected to have low IPC and high 

LMA and RMA values, in which case the ANN tends to select lower concurrency to avoid 

oversubscribing the memory system. The optimal degree of concurrency can vary across 

regions due to variance of execution signature. On the other hand, TMA makes use of LMA, 

RMA and thread mapping information to redistribute threads in a more balanced way. 

Following prediction, DyNUMA actuates the selected concurrency and thread mapping for 

the remaining time of program execution. 

 

DyNUMA predicts performance and energy efficiency using the metrics shown in Table 

3.2-1. The EDP and MFLOPS/Watt are calculated by Equation 3.2-1 and             -  

respectively. The system provides the end user with flexibility to define different metrics 

while using the same unified prediction infrastructure explained in Section III.C. 
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Table 3.2-1 Three metrics used for the prediction of performance and energy efficiency. 

 

Wall-clock time Wall clock time of a parallel region 

EDP Energy-Delay-Product of a parallel region 

MFLOPS/Watt Number of floating point instructions (in millions) 

per second per Watt of a parallel region 

 

 

Equation 3.2-1:                               

 

            -                
                                     

              
  

 

 

One of DyNUMA’s design goals is to be easily portable across platforms with different 

architectures. This is achieved by using portable metrics in the DyNUMA model of 

performance, namely IPC, LMA and RMA. The DyNUMA predictor uses a configurable, 

back-propagation, artificial neural network model [90] which can be ported by changing two 

parameters: the number of cores and the number of NUMA memory nodes of the target 

machine. ANN is an adaptive system that learns its coefficients using training sets fed through 

the network during a learning phase.  
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Figure 3.2-2 The ANN model for four quad-core processors (16 cores in total) and 4 

NUMA memory nodes 

Figure 3.2-2 shows an example of the configurable ANN model. The topology of the 

ANN model in this example emulates a node with 4 quad-core processors and 4 NUMA 

memory nodes. The topology of the ANN model emulates the target architecture. The ANN 

includes three layers: input, internal and output. The cells in the input layer correspond to 

cores and receive as input the execution signature of each thread. The cells in two internal 

layers emulate the controllers of NUMA memory nodes. The links between two internal 

layers emulate communication among memory nodes. For example, the link between the 

memory controller 1 and the memory controller 3 emulates data transfers between cores 

attached to the memory node 1 and cores attached to the memory node 3. The ANN can have 

multiple outputs. Each output represents the predicted metric at a different degree of 
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concurrency. Output i is the predicted value when running the examined code region with i 

threads. 

In the current implementation, the ANN model predicts the three metrics listed in Table 

3.2-1. The ANN model can be reconfigured for different systems by changing the number of 

cells in the input and internal layers to correspond to different numbers of cores and memory 

nodes. The topology of the ANN reflects the system interconnect topology. It is not fully 

connected since each core is associated with one NUMA memory node and not all cores 

directly access all memory nodes. This ANN model can be easily adapted to handle SMT 

architectures (multiple hardware threads per core) by using the execution signature of 

hardware thread as input. There are several advantages of using ANN. First, it can easily 

capture the hardware architecture by changing its internal layers and topology. Second, it can 

generate multiple predictions under different levels of concurrency in parallel, contrary to 

prior linear DCT models that require a different model to predict each level of concurrency 

[54]. Third, ANN is a non-linear statistical modeling tool that captures complex relationships 

between inputs (execution signatures) and outputs (performance and power efficiency 

metrics). Such relationships cannot be easily captured by other models. We demonstrate this 

advantage by comparing the ANN model to a state-of- -art linear regression model proposed 

by Curtis-Maury et. al. [55]. 

 

1) Data collection: The ANN model in DyNUMA is trained offline. Figure 3.2-1 shows 

the data collection framework for offline training. The OpenMP PR Signature Collector uses a 

set of APIs for application instrumentation. The instrumentation enables the collection of 

signatures of parallel regions, thread mapping information and metrics targeted for 

optimization. The signature collector uses PAPI[146], Oprofile [17] and WattsUp [20] power 

meters. The collected data is transformed into training samples. A training sample consists of: 

(1) a set of metric values (wall-clock time, EDP or MFLOPS/Watt), (2) a set of thread 
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signature tuples, and (3) thread mapping information. LMA and RMA are hardware events and 

are collected using architecture-specific counters. The thread mapping data is collected with 

the portable POSIX sched getcpu() interface.  

 

2) Power Measurement: To compute energy efficiency metrics (EDP and 

MFLOPS/Watt), DyNUMA collects power consumption of each parallel region. The runtime 

system uses an API to connect to external WattsUp power meters and record power for each 

region. The dynamic power of the two components varies as DyNUMA changes the number 

of active threads, memory access rate, and access pattern per thread. There are other hardware 

components that might exhibit dynamic power variance under DyNUMA; however, their 

power variance is expected to be relatively small, comparing to the processors and main 

memory [77]. We use Equation 3.2-3 to compute the power variance of processors and 

memory:  

 

Equation 3.2-3:                                        

 

Powerexec and Powersystem_idle are collected from the WattsUp power meter. Because we 

are unable to physically access the TilePro64 machine that we use in our experimental 

analysis, power consumption of the TilePro64 processor is obtained from the TilePro64 

technical specification, assuming that processor power scales linearly from idle (17 Watt) to 

maximum (23 Watt), with the number of cores. 

 

TMA uses an algorithm based on the critical path analysis to identify the optimal thread 

mapping. In most cases, programmers want to distribute workload (computation) evenly in 

their parallel execution. However, the execution time from one thread to another may still 
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vary. This is because of different memory access patterns across threads and uneven 

distribution of data across memory nodes. The thread with the longest execution time in any 

given parallel region is said to be on the critical path. Note that TMA cannot be combined 

with ANN and has to be applied after ANN, because the critical path analysis can only be 

performed after the thread concurrency is determined.  

We use Figure 3.2-3 to further explain the critical path problem. Figure 3.2-3 displays 

remote and local memory accesses per socket collected from the first OpenMP parallel region 

in the NAS FT benchmark (class B). The test was deployed on a platform with four quad-core 

processors (16 cores total), each with one memory node. We used 8 threads to run this parallel 

region and all threads are evenly distributed to 4 sockets (i.e., 2 threads per socket). We traced 

LMA and RMA per socket for 40 iterations. From the figure, we observe that each socket has 

different RMA and LMA. Socket 1 attains the lowest RMA and the highest LMA. We further 

mapped threads to cores in different ways, but a similar distribution of memory accesses was 

observed. The difference in the number of memory accesses results in asymmetric execution 

time between threads and causes the critical path problem. 
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Figure 3.2-3 The distribution of remote memory accesses and local memory accesses 

in an OpenMP parallel region in FT.B 

We present an algorithm that attempts to reduce the critical path by modifying thread 

placement, hence the ratio of local to remote memory accesses from each thread. The 

algorithm attempts to evenly distribute accesses between memory nodes, reduce remote 

memory accesses, and avoid contention on any memory node. The pseudo-code is shown in 
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Algorithm 3.2-1. 

 

Algorithm 3.2-1 TMA Algorithm 

The input to the algorithm is a thread to node mapping table (TNT). The output is the 
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predicted best thread mapping (mapMinCp). The TNT is a data structure collects the number 

of memory accesses from each thread to each memory node, derived from the execution 

signature of the program collected during sample iterations. An example of a TNT is shown in 

Table 3.2-2. This TNT records the number of memory accesses from four threads to four 

memory nodes. Each element (e(Ti,Dj)), corresponds to the number of memory accesses to 

memory node j (i.e., Dj ) from thread i (i.e., Ti). The algorithm first sorts all elements in the 

TNT in descending order of number of memory accesses (line 3 of Algorithm 1). This sorting 

step facilitates quick thread mapping in later steps of the algorithm. In the implementation, we 

use parallel radix sort to reduce sorting complexity. The sorting result is saved in a list (sl). 

Following the sorting, the algorithm iteratively selects an element from sl and places the 

selected element, e(Ti,Dj) , in mapMinCp (line 6) until all threads are selected. The selected 

element represents a decision of placing thread Ti on memory node Dj.  

The selection criterion is implemented in GetMinCriticalPathElement (line 9). Generally 

speaking, this function chooses an element whose corresponding thread placement introduces 

the minimum imbalance of memory accesses between memory nodes. The function initially 

selects the first element from the sorted list (line 10), and then considers elements in other 

memory nodes (line 11) whose number of memory accesses are close (within 75% in our 

cases) to that of the first element in the input sorted list. The reason the algorithm considers 

multiple candidates instead of choosing the first element is that the first candidate from the list 

may not necessarily avoid imbalance of memory accesses between memory nodes. In 

particular, the first candidate may have a significant imbalance between LMA and RMA which 

creates unbalanced memory accesses across memory nodes. To estimate how placing a thread 

i on memory node j affects the critical path, we define a metric Impact Factor, IF, as: 

Equation 3.2-4:   (     )         ∑                 
                 

 

The equation weighs the number of remote memory accesses by a NUMA Factor because 
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a remote access has longer latency than a local access. The NUMA Factor is the ratio of the 

remote memory access latency to the local memory access latency. The NUMA Factor is a 

variable. Depending on the distance between the core that issues a memory access upon a 

cache miss and the memory node where the miss is served, the NUMA Factor can have 

different values. The NUMA Factor can be calculated by measuring average access time 

when running a micro-benchmark to vary data location between memory nodes. Based on the 

above equation, an element with a small IF means that this element introduces 

lowest-unbalanced memory accesses between memory nodes while avoiding remote memory 

accesses.  We also define a counter (cpImpact) associated with each memory node that 

accumulates the IF value for each memory node whenever a thread mapping is determined 

(line 14). The counter helps us trace the distribution of memory accesses across memory 

nodes.  

FindLowestCPElement (line 12) selects the best candidate. For all candidate elements 

(line 18), the algorithm first calculates IF(e) + cpImpact[e.Dj], which estimates the impact of 

the memory accesses of a specific thread to memory node Dj on the critical path. The 

algorithm selects the element with the minimal value (lines 19 and 20) to minimize memory 

load imbalance between nodes while avoiding remote memory accesses. 

 

Table 3.2-2 A TNT for 4 threads whose data is distributed into 4 memory nodes 

Thread 

Id Mem Node1 Mem Node2 Mem Node3 Mem Node4 

1 100 1000 0 2000 

2 1300 200 3500 1300 

3 220 5000 500 500 

4 4500 3800 2000 1000 
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Table 3.2-3 An example to show how we choose the best element 

element IFvalue cpImpact IF + cpImpact 

e(4,1) IF(e(4,1))=14700 cpImpact[1]=0 14700 

e(4,2) IF(e(4,2))=15050 cpImpact[2]=6830 21880 

e(2,3) IF(e(2,3))=7700 cpImpact[3]=0 7700 

 

We use an example to further illustrate the algorithm. We assume a system with four 

threads and four memory nodes, with a TNT as shown in Table 3.2-2. After applying the 

algorithm, elements e(3, 2), e(2, 3), e(4, 1), and e(1, 4) are considered, which means that 

threads 3, 2, 4, and 1 are placed on cores close to memory nodes 2, 3, 1, and 4 respectively. 

We use a specific case to explain the process of choosing the best mapping candidate. In the 

second iteration of the selection loop (line 4), the algorithm first selects e(4, 1) from the sorted 

list. The algorithm selects this element, because it wants to first handle the element with the 

highest number of memory accesses. The selection of this element is the key to improve 

performance and should take the most favorable mapping when possible. However, e(4, 1) is 

not necessarily the best choice because it does not have the lowest IF on the critical path. 

Hence the algorithm consider other candidates (i.e., e(4, 2) and e(2, 3)). Their number of 

memory accesses is close to e(4, 1). The algorithm then calculates the IF values of the three 

candidates and checks the cpImpact[j] on each memory node (shown in Table 3.2-3). The 

algorithm eventually selects e(2, 3) instead of e(4, 1) because its IF + cpImpact[j] is the 

lowest among the three candidates, which intuitively introduces the smallest imbalance 

between the four memory nodes. 

 

DyNUMA changes concurrency and thread mapping between parallel regions. Frequent 

changes in concurrency may incur performance loss due to cache flushing. To ameliorate this 

effect, the runtime system considers remapping threads only for parallel code regions with 
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sequential execution times of 100 milliseconds or higher. In addition to cache flushing, 

non-optimal concurrency prediction or non-optimal prediction of thread mapping can cause 

performance loss. DyNUMA uses an additional iteration to measure performance of the 

selected configuration and compares it with the performance of the system default. If the 

system default is better, the predicted configuration is discarded, and the system default is 

taken. 

 

Experimental analysis explores two aspects of DyNUMA: prediction accuracy of the 

ANN model and effectiveness of model-based optimization. We use two benchmark suites, 

the NAS parallel benchmarks (3.1) [28] and the ASCI Sequoia benchmark suite [177]. The 

benchmarks have 85 OpenMP parallel regions in total. Their workload ranges from 

compute-intensive to memory-intensive and most benchmarks exhibit phase changes in their 

memory access patterns. We use the Class D data set for all NAS benchmarks and use two of 

the Sequoia AMG benchmarks, AMG.Relax and AMG.Matvec. The number of sample 

iterations k (see Section 3.2.1) is 4 in our tests. When presenting the results, we use the 

notation benchmark_suite_name.benchmark_name.region_no to represent a specific 

OpenMP parallel region. For example, NPB.FT.1 refers to the first parallel region in the 

benchmark FT in the NAS benchmark suite. We present experiments from three platforms 

listed in Table 3.3-1 to verify the portability of DyNUMA. We use Intel’s C and Fortran 

compilers (version 12.0.2) on AMD platforms. On TilePro64, we use the Tilera GCC and 

Fortran compiler (version 3.0.1) to perform cross compilation on an X86-64 platform. 
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Table 3.3-1 Three test platforms 

Processor #Cores Speed 

Memory 

Nodes 

Memory 

Size 

Barcelona 16 2.0 GHz 4 64GB 

Magny-Cours 32 2.5 GHz 4 128GB 

TilePro64 64 866 MHZ 4 64GB 

 

We execute OpenMP benchmarks with static loop scheduling, which is the most 

appropriate for the selected benchmarks. Nevertheless, DyNUMA is independent of 

scheduling policy and can be applied as is once an initial distribution of workload between 

threads is performed by the scheduler. We execute benchmarks using first-touch for data 

placement in memories. First-touch is a page-level placement policy that allocates each page 

in memory located as close as possible to the processor that first touches the page during 

program execution. First-touch is an effective common case policy for many operating 

systems (e.g., Linux and FreeBSD). 

 

We evaluate the ANN model prediction accuracy by predicting wall-clock time and EDP. 

We use a cross validation technique in our experiments. In particular, we use 7 out of the 8 

benchmarks for training and the remaining benchmark to verify prediction accuracy. Figure 

3.3-1 shows the prediction error rate on the three platforms using 1400 samples in total. The 

error rate for wall-clock time is 2.18% on average and only 7.7% of the samples has an error 

rate higher than 5%. The prediction error rate for EDP is 3.31% on average and only 13.9% of 

the samples has an error rate higher than 5%. 
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Figure 3.3-1 The distribution of ANN prediction error rate for EDP and wall-clock time 

 To investigate the variance of prediction accuracy across benchmarks, we look into the 

prediction results for each benchmark.  

 

Figure 3.3-2 The EDP prediction results for the 16-cores system with the ANN model. 

The Normalized Prediction refers to the predicted value normalized by the measured one. 

 

Figure 3.3-2 displays the EDP prediction results for one OpenMP region of each 

benchmark. Similar variance of prediction accuracy is observed in other OpenMP regions. We 

notice that the predictor achieves high accuracy no matter how many threads are chosen to run 

a parallel region. We also notice that the prediction error rate for NAS SP is relatively high. 

We suspect this is due to a shift in the memory access pattern within the benchmark region 

studied. Our model cannot capture well oscillating memory access patterns within the same 
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OpenMP region. Prediction accuracy can be improved, if the model is applied at a granularity 

finer than that of an OpenMP parallel region. 

 

Linear regression models have been used for performance prediction in earlier work [54, 

116, 117]. They are a realistic baseline to compare against the ANN model. We compare the 

prediction accuracy of the ANN model with that of a linear regression-based model proposed 

by Curtis-Maury et al. [53]. This linear regression model is briefly explained in Equation 

3.3-1. 

Equation 3.3-1 :                                   

 

Here, pi is the prediction target (e.g., wall-clock time, EDP or MFLOPS/Watt) for the 

case of using i threads. Pmax is the measured value using maximal number of threads and Hi() 

is a transfer function to scale the observed Pmax. The transfer function is a linear combination 

of four hardware event rates, m1,m2,m3, and m4, with significant contribution to the observed 

metric, in a statistical sense. For the 16-core Barcelona system, these rates are IPC, LMA, 

RMA and branch misses per cycle.    is a constant residual.  

 

Figure 3.3-3 Prediction accuracy of the linear regression model 
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Figure 3.3-3 shows the prediction results from 21 parallel regions of NPB FT, CG, SP 

and MG benchmarks using the linear regression model. The benchmarks run with 8 threads on 

the 16-core Barcelona platform. The curves within the figure represent prediction values 

normalized to the measured values. We find that linear regression predicts EDP poorly.  

 

Table 3.3-2 Comparison of the linear regression (LR) and ANN models for time and 

EDP predictions 

Model LR ANN 

The averaged error rate for time prediction 9.90% 2.18% 

The standard deviation for time prediction 1.591 0.156 

The averaged error rate for EDP prediction 22.61% 3.31% 

The standard deviation for EDP prediction 2741.3 106.78 

 

The prediction error is up to 60%. We further compare the linear regression model and 

ANN models in Table 3.3-2, which summarizes the prediction error rates for wall-clock time 

and EDP, collected from the 16-core Barcelona platform. The results are averages of 21 

parallel regions. In terms of wall-clock time prediction, the ANN model is about 7% better 

than the linear model, with the standard deviation being 10 times less. In terms of EDP 

prediction, the ANN model is much better (18%) than the linear model, with the standard 

deviation being 25 times less. The ANN model achieves better prediction accuracy than the 

linear model. This is because there is inherent nonlinear relationship between hardware 

counter event rates and the prediction target, due to the implications of data locality and 

contention. The linear model lacks the ability to emulate the NUMA architecture, as all 

remote memory accesses are treated equally and summarized as a single term with only one 

coefficient within the model, despite varying latency due to the interconnect topology and 

contention. In contrast, the ANN model can map data locality and architecture details into the 

model illustrated in Figure 3.2-2 , hence is able to make prediction with higher accuracy. 
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We compare thread mapping in DyNUMA to the default thread mapping scheme used in 

Linux. Table 3.3-3 displays selected results. For each benchmark, we choose a specific 

number of threads and then execute it with the two methods to decide the thread mapping. We 

run each test 100 times on the 16-core Barcelona machine. Table 3.3-3 reports the best 

performance improvement with DyNUMA for each test case. The results indicate that 

optimized thread mapping can significantly improve performance.  

 

Table 3.3-3 Performance improvement with our thread mapping algorithm 

 

Benchmark  

# 

Threads  Performance Improvement 

SP.C  4 20% 

FT.B  8 28% 

MG.B  12 6% 

MG.B  16 14% 

 

 

We use two benchmarks, AMG.Relax and AMG.Matvec to show if the ANN predictor 

provides performance improvement over a system that uses only TMA as an optimizer before 

showing the performance of the two optimizers combined in next subsection. Figure 3.3-4 

shows that concurrency control with the ANN provides significant additional improvement in 

performance and energy-efficiency compared to mere thread mapping optimization. This 

behavior is more pronounced in memory-bound code regions. 



 57 

 

Figure 3.3-4 Performance comparison of ANN over TMA 

 

We report results in Figure 3.3-5 to Figure 3.3-8 and Table 3.3-4. These results are 

normalized to the respective metrics with maximum concurrency and the default Linux thread 

mapping. 

On TilePro64, we test DyNUMA with a limited subset of the benchmarks due to 

hardware instability. The TilePro64 provides a platform-specific Oprofile tool for collecting 

hardware event rates. Oprofile, unlike PAPI, does not have the ability to collect data at 

runtime. Therefore, the TMA algorithm cannot collect application signatures on TilePro64. 

Hence, we only use the ANN model to predict thread concurrency without applying TMA on 

the Tilera platform. Figure 3.3-5 summarizes the performance of DyNUMA and Table 3.3-4 

presents averages. We notice significant improvement in EDP and noticeable improvement in 

wall-clock time on the TilePro64. The improvement stems exclusively from concurrency 

throttling, as applications do not scale perfectly on the TilePro64. By choosing appropriate 

thread-level concurrency, DyNUMA improves EDP by 30%. Improvements in performance 

and energy-efficiency on other platforms are more modest but still measurable and consistent. 
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To further explore DyNUMA results, Figure 3.3-6 to Figure 3.3-8 break down the 

metrics presented in Figure 3.3-5 between OpenMP parallel regions longer than 100 

milliseconds. On the 16-core Barcelona system, DyNUMA achieves improvement in 

performance in 45% of the OpenMP parallel regions and energy efficiency in 72% of the 

OpenMP parallel regions; on the 32-core Magny-Cours machine, DyNUMA achieves 

improvement in performance in 59% and energy efficiency in 56% of OpenMP parallel 

regions; on the Tilera platform, all parallel regions benefit from DyNUMA in both 

performance and energy efficiency. However, not all parallel regions present opportunities for 

optimization. Compute-intensive regions tend to be more scalable and less sensitive to thread 

mappings than memory-bound regions. This is the case, for example, in NPB.FT.4, NPB.BT.1, 

NPB.BT.4 and NPB.UA.18. In these parallel regions, DyNUMA leads to negligible 

performance loss. 

 

Figure 3.3-5 Performance improvement with DyNUMA on the three platforms. 
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Figure 3.3-6 Performance with DyNUMA on the 64-cores Tilera platform 

 

 

 

Figure 3.3-7 Performance with DyNUMA on the 16-cores Barcelona platform 

 

Figure 3.3-8 Performance with DyNUMA on the 32-cores Magny-Cours platform 
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Table 3.3-4 Performance improvement with DyNUMA on the three platforms 

 

Metrics  Barcelona Magny-Cours TilePro64 

wall-clock time 6.74% 6.58% 12.88% 

EDP  10.45% 6.90% 30.58% 

MFLOS/Watt  10.66% 7.60% 18.49% 

 

 

Performance and energy efficiency optimization depend on effective control and mapping 

of parallelism to the system architecture. NUMA architectures significantly expand the search 

space of optimality. Programmers are often unaware of or unwilling to navigate this space via 

experimentation. Effective automatic control of concurrency and mapping needs to consider 

not only workload characteristics but also specifics of the underlying NUMA architecture. 

This work presents a framework combining a memory-centric, architecture-aware ANN 

model and a thread mapping arbiter to help parallel programs to autonomously optimize their 

concurrency and thread mapping at runtime. 

We evaluate the framework using the NAS and Sequoia Benchmarks on three different 

NUMA platforms. DyNUMA achieves on average 8.7% improvement in wall-clock time, 16% 

improvement in EDP and 12.3% improvement in MFLOPS/Watt.  

For future work, we will incorporate DyNUMA with dynamic data migration to achieve 

better thread-data affinity. We will also develop a strategy to combine small parallel regions 

into bigger ones to explore new opportunities for performance improvement. 
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Since the dawn of the multi-core era, demand for memory bandwidth resources has 

increased dramatically because of the rapid increase in the number of cores per chip. 

Transferring growing amounts of data between the CPU and memory at higher rates of speed 

generally increases power consumption while the performance gains vary from substantial to 

nonexistent due to the memory wall. Ideally, as the number of cores and memory capacity 

increase, consuming additional power should result in a substantial increase in performance.  

 

In previous work, researchers focused on altering memory bandwidth dynamically based 

on workload demand while lowering power consumption. These techniques include dynamic 

concurrency throttling (e.g. thread/core control) [52, 116, 178], memory throttling (e.g. 

voltage/frequency scaling of DRAM) [58, 62, 214], and memory parallelism (e.g. memory 

node control) [61, 130, 131, 213].  Dynamic concurrency throttling not only controls the 

computation throughput but also controls the demand of bandwidth to the memory system. In 

addition, memory throttling (i.e. DVFS) and memory parallelism controls the theoretical 
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maximal bandwidth supported in the memory system. While these methods show promise in 

isolation, emergent systems must consider their combined interactive effects on energy 

efficiency (i.e. power and memory bandwidth).  

 

Figure 4.1-1 Energy improvement of FT benchmark 

  

As shown in Figure 4.1-1, the energy consumed by FT on a 4-socket, 16-core system is a 

function of memory frequency and the memory-level parallelism (MLP). FT, part of the NAS 

parallel benchmarks (NPB), solves a 3-dimensional partial differential equation using the fast 

Fourier transform.  The vertical axis represents the energy improvement (higher is better) 

over a baseline configuration of 1 memory node at 333 MHz frequency. For FT, using more 

than 2 memory nodes at 400 MHz frequency and higher provide diminishing improvements in 

energy. Finding the optimal energy is a multi-dimensional optimization problem because of 

the interacting effects of memory frequency and memory parallelism. Furthermore, although 
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not shown in Figure 4.1-1, thread-level parallelism (TLP) is also an important parameter as it 

affects memory contention and overall performance. Understanding the combined effects of 

memory throttling, memory parallelism, and thread parallelism on performance and power is 

a challenging task. In this section, we propose an analytical model of memory performance 

that uses queuing theory to capture the effects of contention on bandwidth [78]. We use the 

resulting model to study the combined effects of dynamic concurrency throttling, memory 

throttling, and memory parallelism on performance. We demonstrate that model-guided 

optimization can improve energy consumption up to 40% for applications with high demand 

for memory bandwidth. 

 

Our performance model, concurrency-frequency model or CFM, predicts the number of 

cycles per instruction (CPI) as a function of the number of threads, the number of memory 

nodes, and the memory bus frequency. This model is based on an M/M/C queuing model [78], 

which we describe in Section II. We use CFM to derive an energy model for multi-core, 

non-uniformed memory access (NUMA) systems based on power models from published 

vendor data [5, 23, 215]. Our energy model is described in Section III. We validate our 

models of performance and energy in Section IV. In Section V we analyze the impact of 

thread parallelism, memory frequency and concurrency, and their combined effect on energy 

and performance. Our related work is described in Section VI followed by our conclusions in 

Section VII. 

 

 

In this section, we first introduce the memory system in a NUMA multi-core 

multiprocessor. We then discuss how to apply a customized M/M/C system to model the 

memory system performance based on the queuing theory. This M/M/C system serves as our 
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preliminary model to motivate our further work. 

 

 

We use Figure 4.2-1 to illustrate the memory system in NUMA multi-core 

multiprocessors. Most of modern multi-core multiprocessors have memory controllers (MC) 

integrated into processors, but we separate MC from processors within the figure for 

illustration purposes. 

 

Figure 4.2-1 Memory systems in NUMA multi-core multiprocessors 

 

In the system, each core in a processor accesses its local memory through the local MC. 

In addition, each core can also access remote memory through the routing interface and 

interconnect. Although the remote memory access can bring longer memory access latency 

than the local memory access, parallel memory accesses through multiple MCs increase total 

memory bandwidth. 

 

The memory system performance can be impacted by both TLP and MLP. In particular, 



 66 

high level TLP could result in intensive memory requests, which in turn causes memory 

contention in multiple memory components (e.g., memory bus, memory controller, and 

DRAM chips), dynamic concurrency throttling (DCT) [52, 116, 178] is a technique to control 

TLP to control the tradeoff between performance and power. 

DCT can be implemented by controlling number of threads and cores based on the need 

of application at runtime. MLP also has impact on performance of the memory system. By 

changing data distribution between memory nodes, MLP technique can control how many 

memory nodes should be involved in an application. MLP controls the available memory 

bandwidth to the application. Furthermore, memory frequency also impacts the memory 

system performance. Memory DVFS is a common technique to control memory frequency to 

alter memory system bandwidth. Previous work to improve memory efficiency has focused on 

dynamic change of TLP, MLP and memory frequency in isolation. However, these factors 

have interacting effects on memory performance and energy, which must be understood 

before devising an optimal strategy. In the next section, we introduce a customized M/M/C 

queuing model from queuing theory which naturally captures TL, MLP and memory 

frequency effects. 

 

Queuing theory is the mathematical study of waiting lines and queues. It has been widely 

used to address problems in traffic engineering and packet switching networks. To apply 

queuing theory, we abstract the memory system shown in Figure 4.2-2. It shows n cores try to 

access to the NUMA memory system through a simplified memory interface. The interface 

has a single logical queue connecting to   memory nodes. We use a M/M/C queuing system 

to model the above abstract memory system. 
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Figure 4.2-2 A simplified and abstract memory model to apply the M/M/C queuing 

model 

 

The M/M/C queuing system models a single queue system with multiple servers to 

service multiple customers at the same time. The first two ―M‖ in the M/M/C model indicates 

that all requests from customers follow the Markovian (the Poisson process), and the request 

service times have an exponential distribution. The ―C‖ in M/M/C denotes the number of the 

servers in the queuing model.  

 

In our cases, the server corresponds to the memory node; the customer corresponds to the 

processor core; and the customer request corresponds to the memory access request per core. 

We use the M/M/C system to estimate the average access latency of the abstract memory 

system shown in Figure 4.2-2. We also use the following notation to describe the system. The 

system has   active cores. The memory request arrival rate per core is   . The system has m 

memory nodes running at frequency     . The maximal service rate of a single server is μ. μ 

is proportional to memory frequency,     . In other words,         , where k is a 

system-dependent constant factor. 
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We use the M/M/C system to model the average memory stall cycles per instruction as a 

function of the last level cache (LLC) misses. We denote the cycles per instruction as CPI. 

According to the classical M/M/C model, our M/M/C model includes both service cycles St 

and waiting cycles Mt : 

 

Equation 4.2-1 :               

 

According to Kendall’s notation [107] and the mathematical induction of the M/M/C 

model from [29], St and Mt can be expressed as follows: 

Equation 4.2-2:      
 

 
 

Equation 4.2-3:    
       

       
 

In Equation 4.2-3,         is the Erlang formula[56]. It can be expressed as follows: 

 

Equation 4.2-4          
     

       
      

Equation 4.2-5:        ∑
     

  

   
    

     

  
 

 

     
    

 

γ in the Equation 4.2-3 to Equation 4.2-5 is an indicator in the M/M/C system to identify the 

system pressure.  γ is defined as the ratio of the total customer (i.e., core) request arrive rate 

to the total service rate from all servers (i.e., memory nodes).  When γ is close to zero, the 

number of requests from all cores is low, so the memory system has short access latency. 

When is close to 1, the system is saturated with memory requests which results in long access 

latency. Based on the definition of, it can be formalized as  

Equation 4.2-6:   
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Given         , we further model   as follow: 

 

Equation 4.2-7:   
   

      
 

 

  in the Equation 4.2-7 contains four import factors that affect system performance.   

represents the degree of TLP. Both   and    capture intensity of memory requests.   

represents the degree of MLP. Both   and      control available memory bandwidth.  

 

Based on the Equation 4.2-7, we can formalize CPI as: 

 

Equation 4.2-8:     
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Obviously, CPI is a function of γ. We now use CPI ( ) to represent CPI. To model the 

NUMA latency effect, we further introduce a term       in the Equation 4.2-1. 

Equation 4.2-9:         
   

     
      

                   

 

   

     
 is the ratio of remote memory access to the total memory accesses.       is the 

latency difference between local and remote memory accesses.   is a system parameter to 

quantify the impact of NUMA latency on the critical path. Based on Equation 4.2-1 to 

Equation 4.2-9, we have CPI(γ) as follows: 

 

Equation 4.2-10:    (  
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   (  
   

      
) in the Equation 4.2-10 estimates the memory system performance 

by considering interacting effects from TLP, MLP and memory frequency. 

 

The M/M/C memory model in the previous section models memory system performance. 

In this section, we propose a system-wide concurrency-frequency model (CFM) which 

incorporates the M/M/C memory model to enable performance prediction for an application. 

Then we use power models proposed by others [5, 23, 215] in conjunction with the CFM 

model to create an energy model to explore optimal energy consumption. 

 

The CFM model estimates the system-wide CPI of an application on multi-core NUMA 

systems by considering combined effects of TLP, MLP and memory frequency. The name 

Concurrency-Frequency Model captures both processor and memory-level concurrency (i.e., 

  and  ) and memory frequency (    ).  

We first model the execution time (CPU cycles) of a parallel application using a single 

core (  = 1), and then extend it to model performance for multiple cores. The performance of 

a single core is modeled in the Equation 4.3-1: 

 

Equation 4.3-1:                                                 (  

   

      
)  

       is the total CPU execution cycles (i.e., with no stalls).        is the total CPU 

stall cycles due to accessing the memory system.  

        in the Equation 4.3-1is the total number of on-chip instructions, and         
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denotes the number of instructions which cause the LLC misses. CPICPU is the average cycles 

of on-chip instruction. CPI(γ) represents the average memory stall cycles of a single core, 

which can be modeled in the Equation 4.2-10 with   = 1. 

We extend the Equation 4.3-1 to model multi-core in the Equation 4.3-2. In general, 

        can be divided into two parts:           represents the computation that can be 

executed in parallel without data dependency (e.g., independent floating point multiplication). 

Using multiple threads resident in multiple cores to execute this computation can potentially 

result in performance improvement.            represents the rest of the on-chip 

instructions that has to be executed in serial (e.g., the critical section that has to be executed 

by individual threads). 

Equation 4.3-2:                              

 

The parallel execution time can be described as: 

 

Equation 4.3-3:                   (
 

 
        

          
)                       

   

      
  

We divide the Equation 4.3-3 by          to calculate the system-wide CPI showed on 

the left hand side of the Equation 4.3-4 (i.e.,                 ). 

Equation 4.3-4:                                     (
 

 

        

       
 

         

       
)         
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)  

                 represents the CPI of an application when executing with n cores 

and m memory nodes at memory frequency     . 

We substitute 
        

       
 with α, and substitute 

         

       
 with (1 − α), so α denotes the 

ratio of parallel execution to the whole execution. We further 
         

       
 with β so β denotes 
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the ratio of instructions that causes LLC misses to total instructions. Based on α and β, we 

rearrange the Equation 4.3-4 as follows. 

Equation 4.3-5:                  (
 

 
       )                 

   

      
  

 

To calculate energy, we must know both execution time,              and system 

power,            . The execution time can be directly derived from the Equation 4.3-6.  

Equation 4.3-6                                         

 

The system power includes CPU power (    ), memory power      ) and other power 

        ) consumed by other system components (e.g., disk and cooling fans). We assume 

       is fixed, and focus on      and     , because CPU and memory account for major 

power consumption variance when changing n, m, and     . The system power is defined in 

the Equation 4.3-7. 

Equation 4.3-7:                                   

 

To calculate     , we use a previously proposed model [2]. In particular, we first obtain 

the peak CPU power from vendor’s CPU specification. Then we fix one half of the peak CPU 

power as static power, and scale the other half using IPC-based linear scaling. 

To calculate     , we use a previous power model as well [5, 23, 215]. The memory 

power consists of three parts: 1) the background power that accounts for all static power when 

the memory devices stay in active and idle states; 2) the activate power that is the power 

consumed in the ACTIVATE command. The ACTIVATE command selects a row address 

from a memory bank and transfer the row’s cell data to the sense amplifiers, putting the 

device into the active state; 3) the read/write power that accounts for the power consumption 
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when data moves among the sense amplifiers, read/write latches and I/O pins. The memory 

power can be impacted by the memory frequency, number of memory nodes and total 

memory bandwidth utilization from the application (i.e., λ). We calculate the memory power 

using the Micron DRAM spreadsheet [2] and those parameters listed in Table 4.4-1. Note that 

the memory bandwidth utilization heavily depends on application memory access patterns. To 

accurately measure memory bandwidth utilization, we count the number of off-core memory 

requests using performance counters, and then divide this number by total CPU clock cycles. 

The energy is the product of time and power. We define the energy consumption of an 

application as follows: 

 

Equation 4.3-8:      (     
   

)    (     
   

)          
   

  

 

Based on the above energy model, we define an energy improvement metric 

                as follows. 

 

Equation 4.3-9:                 

  
                  

              
 

                                      

                             
 

                estimates the ratio of energy of the configuration            to 

the baseline configuration                 The higher the value, the better of energy 

consumption improvement. We use it to search for the optimal energy configuration. Readers 

can use Equation 4.3-6and Equation 4.3-7 to derive other energy-related metrics, such as the 

energy-delay-product (EDP). 
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Table 4.3-1 Parameter Description and Value 

System  Description  Value  

General Parameters  

n Number of cores   

m Number of memory domains 

     Memory frequency 

Application-dependent Parameters 

       

 

       

 

           

 

            

 

α 

 

β 

 

   

 

   

     
 

On-chip cycles per instruction  

 

Memory stall cycles per LLC  

 

instructions in parallel execution 

 

instructions in sequential execution  

 

ratio of parallel execution of an application 

 

fraction of total LLC misses and on-chip inst.  

 

bandwidth requests per core  

 

ratio of remote memory access  

 

Architecture-dependent Parameters 

PRE PDN  Mem. background power: precharge powerdown  14mW 

PRE STBY  Mem. background power: precharge standby  168mW 

ACT PDN  Mem. background power: active powerdown  28mW 

ACT STBY  Me. background power: active standby  196mW 

ACT  Activation Power  146mW 

WR  Read and Write Power  448mW 

k  Service factor of memory system  4 

Δnuma  Diff. of NUMA Latency  45 

ζ  System factor to estimate NUMA effect  0.4 
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In this section, we describe how to collect the values of the parameters listed in Table 

4.3-1 to use our models in practice. We first introduce the system setup and test benchmarks 

and explain how to use performance counter based approach to collect these parameters from 

a baseline run. Then we validate our models against direct performance and energy 

measurements. 

 

We ran our experiments on an AMD X86-64 16-way system with 4 sockets, each of 

which has one quad-core AMD 8350HE Opteron processor. The CPU frequency is fixed to 

2.0GHz. Each socket has a JEDEC-style, 16GB DRAM memory system with 2 DIMM 

channels. There is 64GB memory in total in the system. The memory system supports bus 

frequency scaling from 333MHz to 533MHz. We use PAPI version 5.1 to access the hardware 

performance counters to measure the performance events of applications. We study six 

representative benchmarks in the NPB benchmark suite listed in  

Table 4.4-1 to validate our models. These benchmarks range from computation-intensive 

to memory-intensive, and exhibit diverse memory bandwidth utilization. We used the 

OpenMP implementation of these benchmarks. We compiled these benchmarks using Intel’s 

Fortran compiler (version 12.0.2) with -O3 optimization. The operation system is Linux 2.6.1. 

We vary three factors that affect memory performance: the number of cores ( ), the 

number of memory nodes ( ) and memory bus frequency (    ). We control   and   

through the OpenMP environment variables and linux numactl command. numactl runs 

applications with a specific NUMA scheduling or data placement policy. We use the 

interleaving policy to spread data evenly across memory nodes. The memory bus frequency 

can be chosen by setting BIOS at the system booting phase. We use two memory frequencies, 
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333MHz and 533 MHz, to verify the models. 

Table 4.4-1 Collected parameters for applying the models 

Program Description Class α β    

   

     

 
       

FT Fast Fourier Transform C 0.95 7.12E-04 4.20E-03 0.62 0.582 

EP Monte-Carlo methods C 0.99 2.59E-05 2.56E-07 0.03 1.281 

CG 

Conjugate Gradient, 

irregular memory access B 0.94 5.28E-03 7.65E-04 0.71 1.502 

SP 

Pena-diagonal matrices 

solver B 0.91 2.31E-03 4.82E-03 0.72 0.953 

MG 

Multi-Grid on a sequence of 

meshes B 0.88 2.01E-04 4.18E-03 0.64 0.984 

BT Block Tri-diagonal solver B 0.98 2.01E-04 2.61E-03 0.67 0.85 

 

To measure system power, we use the WattsUp [20] power meter to sample the system 

power of each benchmark at runtime. We ran each benchmark with different number of cores 

( ) and memory nodes ( ) configurations with the two memory frequencies. Table 4.4-2 

shows the power of three benchmarks at memory frequency 333MHz with different   and 

  configurations. We use the measured power and energy to validate our energy model.  

Table 4.4-2 Power profiling with memory frequency set as 333MHz 

  

Freq=333MHz  EP.C 
Number of Memory Nodes  

FT.B 
Number of Memory Nodes  

SP.B 
Number of Memory Nodes  

1 2 3 4 1 2 3 4 1 2 3 4 

Num. of Cores  

16 569.1 567.1 567 568.1   586.8 603.4 622.7 647.7 16 582 593.4 621.9 633.4 

12 532.9 534.3 550.5 533.6   582.7 597.9 621.3 632.3 12 579.3 574.5 581.5 593.8 

8 499.3 498.3 498.1 498.1   570.3 578.1 586.8 599.8 8 540.6 571 559.1 590 

4 461.6 460.8 460.2 459.8   540.9 565.3 568.9 567.3 4 512.1 522.1 521.6 532.8 

1 426.8 427.1 427.3 426.4   488.5 490.2 490.2 490 1 474.1 474.1 470.6 474.6 
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The CFM model in the Equation 4.3-5 needs two sets of parameters. The first set 

contains architecture-dependent parameters. The first set includes       ,       . To 

calculate k, we execute the STREAM micro-benchmark  [138] to stress the memory system 

to measure the maximal memory bandwidth ( ) at two different memory frequency levels 

(333MHz and 533MHz). Given the memory frequency and         , we calculate k. To 

calculate       ,  we also use STREAM. In particular, we first use numactl to control data 

distribution across memory nodes. Then we run STREAM and use the hardware counter event 

CPU READ COMMAND LATENCY NODE to measure latency differences between remote 

and local memory accesses.       is the average value based on the measurement.   is an 

empirical value based on our previous work [178].    is an empirical scaling factor to 

calibrate the model’s prediction and the measurement from systems.   is the is the average 

value from over 1500 exhaustive experiments with diverse execution patterns.  

The second set contains application-dependent parameters. The second set of parameters 

includes               and 
   

     
. To calculate them, we use hardware performance 

counters. In particular, for each benchmark, we perform a baseline run with (      

       = 333MHz), and collect the following hardware counter events: total instructions, 

total CPU clock cycles, LLC misses and CPU stall cycles (PAPI_RES_STL). To calculate 

       (non-stall CPU cycles), we subtract CPU stall cycles from the total clock cycles. To 

calculate  , we measure total instructions spent in OpenMP parallel regions and sequential 

regions, and then calculate their ratio. To calculate miss ratios ( ), we measure LLC misses 

and total instructions, and then calculate their ratio. To calculate the remote memory access 

ratio ( 
   

     
), we measure the requests of CPU to DRAM for a target memory node X. 
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We validate the execution time (i.e. Equation 4.3-6) and energy (i.e. Equation 4.3-8) 

against direct measurement at two memory frequencies (333MHz and 533MHz). This section 

shows some of the validation results due to space limitation, but the complete validation 

results can be found from our technical report. Table 4.4-3 summarizes the absolute relative 

prediction error when changing the memory frequency. 

 

Table 4.4-3 Relative prediction error with memory frequency set as 333MHz and 

533MHz 

Program 

Error 

333MHz 533MHz 

Time Energy Time Energy 

FT  8.60% 14.20% 7.80% 11.40% 

EP  3.50% 3.60% 4.80% 4.30% 

CG  12.60% 14.90% 14.20% 13.40% 

SP  14.60% 14.20% 12.80% 16.50% 

MG  18.90% 19.40% 17.20% 17.40% 

BT  10.70% 14.10% 13.50% 16.10% 

 

We selectively show the benchmarks EP, FP and SP for further discussion of our 

validation because they consume small, moderate and large memory bandwidth, and hence 

are representative of diverse workload characterization.  
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Figure 4.4-1 Validation of the performance model by varying TLP and MLP 

The left figures of each benchmark in Figure 4.4-1 shows the measured and predicted 

performance when we change the number of threads. These experiments use a single memory 

node to exclude NUMA effects. The figure shows that the prediction for EP achieves very 

high prediction accuracy. In addition, we notice EP has small   and   values. The small   

indicates that the benchmark has a small portion of memory instructions. The small 

  indicates that the memory bandwidth utilization per core is low, so there are a small 

number of memory stalls. These two application-dependent parameters indicate that 

performance impacts from the memory system in the EP benchmark are small. For the FT 

benchmark, our model prediction is also very close to the measured value. We further notice 

that the best performance is achieved when the benchmark uses 12 cores. When the number of 

cores goes beyond 12, we found the execution time increases. This is an indication that the 

performance improvement due to the increase of TLP is outweighed by the extensive memory 
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stalls due to the increase in memory access intensity. For the SP benchmark, we observe 

similarities to FT when we scale the number of processor cores. The best performance for SP 

is achieved at   = 8. We observe that the CFM model underestimates the impact of memory 

stalls for SP, but it still captures the general trends in performance. 

The right figure for each benchmark on Figure 4.4-1 shows measured and predicted 

performance as we change the number of memory nodes. These experiments use the maximal 

number of cores (  = 16) to stress out the memory system. We notice that we achieve high 

prediction accuracy for EP. Also, we find there is no performance improvement when 

increasing  . Because EP benchmark does not have intensive memory accesses, increasing 

m does not help to improve performance. For FT, our model also predicts its performance 

very well. According to our model predictions, FT can achieve 1.09x when the number of 

memory nodes is 4, close to the measurement (1.12x). For SP, the prediction accuracy is not 

as good as EP and FT. In particular, our model largely underestimates the performance 

improvement when the number of memory nodes is 4. This relatively low prediction accuracy 

may be due to the employment of the abstract memory system model in Figure 4.2-2. With 

the abstract memory system model required by the M/M/C model, there is only a single queue; 

in a real NUMA system, the memory system can have multiple physical queues, each of 

which corresponds to one memory controller. However, our prediction still accurately 

captures the performance trends as we vary the number of memory nodes. 
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Figure 4.4-2 Validation of the energy model by varying TLP 

Lastly, Figure 4.4-2 shows the energy prediction accuracy for FT. We measure the 

energy consumption using 1,4,8,12,16 cores and 4 memory nodes at the memory frequency 

333MHz. We compare the measurement with our prediction. The average absolute error rate 

is 11.4%. 

 

In this section, we use the verified results and model prediction to analyze the impact of 

TLP, MLP and memory frequency to performance and power by controlling     and     . 

Furthermore, we use the      to explore the effects of the three factors to search for optimal 

energy consumption. 

 

Figure 4.5-1 shows the impact of TLP. This figure shows the predicted CPI (for the 

application), and the measured and predicted memory stall (i.e., CPI(γ) for the memory 

system). 
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Figure 4.5-1 The impact of TLP to performance and average memory stall per LLC miss 

 

We run the experiments using a single memory node at the memory frequency 333MHz. 

For CPI(γ) we use the PAPI RES STL performance counter to measure it. In the figure, we 

notice that the CPI(γ) with FP and SP increase as the number of cores increases. For FP, the 

predicted memory stall increases from 22 to 62. For SP, the predicted memory stall increases 

from 24 to 178 cycles. This is an indicator of memory contention, because the memory access 

becomes more intensive as the number of cores increases. For EP, however, we do not 

observe the increase in memory stalls. This is because the memory stalls depend on the 

memory bandwidth utilization per core (i.e.,    in our models). If    is fairly small, (for EP, 

  =2.56E-07), there is no serious memory contention along the data path, hence increasing 

TLP does not lead to an increase in memory stalls. We further notice that the performance of 

FT and SP degrades when the number of active cores increases from 12 to 16. This is an 

indication that the benefit due to increasing TLP is outweighed by the memory contention. 

 

To understand the impact of frequency, we use the CFM model to predict the 

performance of FT at different memory frequencies and different levels of MLP. We 

normalize the performance to the baseline run (                         ). The 

results are shown in Figure 4.5-2 

 



 83 

 

Figure 4.5-2 The impact of memory frequency to performance and system power 

 

At 333MHz, the available memory bandwidth is insufficient to support memory requests 

from cores, so we have the worst performance at this frequency. The performance degrades 

due to increased memory contention when TLP is large (i.e. after       ). As we increase 

the memory frequency, the performance keeps increasing as the number of memory nodes 

increases. However, the increasing rate diminishes. This is an indication that the memory 

bandwidth improvement due to frequency scaling cannot keep up with the increase of 

memory access intensity as the number of memory nodes is increased.  

 

 

Figure 4.5-3 The impact of the number of memory nodes to performance and system power 
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Figure 4.5-3 shows performance and power consumption for the FT benchmark using 16 

cores when increasing number of memory nodes from 1 to 4. We normalize the performance 

to one memory node. In general, as we increase the number of memory nodes, the 

performance increases from 5.45 to 6.13, and the power consumption increases from 141 

Watts to 204 Watts. 

 

 

We use the       model to investigate energy improvement while varying MLP and 

memory frequency. We set the baseline configuration (                    
  

          in the Equation 4.3-9. In the following analysis: we fix        with maximal 

TLP, and evaluate the optimal combination of   and      for the optimal energy 

consumption. Figure 4.5-4 shows the       for EP benchmark. EP is an embarrassingly 

parallel benchmark. It is highly computation-intensive with small memory bandwidth 

utilization. When the memory frequency scales from 333MHz to 533MHz, the      goes 

down from 11.2 to 10.09. This means increasing memory frequency does not improve 

      for EP. This is because computation dominates the most of EP execution. 



 85 

 

Figure 4.5-4 Energy improvement of EP benchmark 

 

Figure 4.5-5 Energy improvement of SP benchmark 

Increasing memory frequency does not improve performance but consumes more 

memory power due to rise of leakage power. In addition, increasing memory nodes from 1 to 

4 reduces       from 11.2 to 11.01, because the system consumes more static power when 
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using more memory nodes. We also notice that scaling memory frequency has larger impact 

to       than increasing the number of memory nodes. This is because increasing the number 

of memory nodes slightly increases background power consumption while leaving more 

memory nodes idle and it does not significantly increase memory power. Increasing memory 

frequency, however, can result in increase to both static power and dynamic power. The 

optimal       of EP is at configuration (16, 1, 333MHz). 

Figure 4.1-1 shows the       for FT benchmark which has higher memory bandwidth 

utilization than EP. For FT, when the memory frequency scales up, the       goes up from 

4.54 (333MHz) to 6.36 (533 MHz) When we increase the number of memory nodes from 1 to 

4, the       improves from 4.54 to 6.05. The increased rate due to increasing number of 

memory nodes is less than that due to memory frequency scaling. We attribute this different 

increase rate to the NUMA effects to performance when accessing remote memory nodes. 

Increasing the number of memory nodes can potentially suffer from NUMA effects and 

degrade performance, hence negatively impacting energy improvement. In general, the 

      model indicates the optimal      of the FT benchmark is 6.36 using the configuration 

(16, 1, 533MHz). This configuration improves 40%       compared to the configuration (16, 

1, 333MHz). (i.e., 6.36 v.s. 4.54). 

Figure 4.5-5 shows the       for SP consumes more memory bandwidth than FT. The 

      behavior of SP is different from EP and FT. When increasing memory frequency, the 

      improves from 3.29 (333MHz) to 3.85 (533MHz). When scaling the number of 

memory nodes from 1 to 4, the       increases from 3.29 to 4.35. We can see that the scaling 

of frequency and memory nodes result in similar improvement in       . However, the 

optimal       is 4.46 when the system uses 3 memory nodes at memory frequency 533MHz. 

This improves        35% compared to the configuration (16, 1, 333MHz), (i.e., 4.46 vs. 

3.29). 

Based on these analyses, we conclude that we cannot tune TLP, MLP and memory 
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frequency individually to get optimal energy consumption. The optimal configuration depends 

on the application characteristics and the need to consider the combined effects of all three 

factors. 

 

In this chapter, we first propose a concurrency-frequency model and an energy 

improvement model based on an M/M/C queuing model. The model predicts the application 

CPI as a function of TLP, MLP and memory frequency to estimate the system performance. 

Furthermore, our models show that the memory frequency, MLP and TLP have interacting 

effects on performance and energy. We validate our models against direct performance and 

energy measurements on an actual 16-way NUMA server. We demonstrate that the 

model-guided optimization can improve energy consumption up to 40% for applications that 

have high demand for memory bandwidth. The proposed model provides new insights that 

consider the interactive effects among TLP, MLP and memory frequency on performance and 

energy. 
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The memory wall has long been a computing bottleneck, and it has been intensified by 

the introduction of multi-core processors. While the primary concern of the memory wall 

focuses on only bandwidth and latency, a new ―power wall‖ challenge emerges for scaling out 

memory capacity within a reasonable power budget. When big data and HPC applications 

drive demand for memory capacity, traditional DRAM technology, unfortunately, with high 

static power will be less effective, and may not scale in terms of density and cost.  

 

Previous work [66, 108, 144, 158, 159, 194, 196, 201, 209] has been proposed to address 

the power wall problem through heterogeneous memories by exploiting DRAM for 

performance and emerging NVRAM memory technologies, like phase change memory 
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(PCM), [199], STT-RAM[36] and memristors[49, 63], for capacity and energy efficiency. 

This work has proposed policies to control the trade-off between delivering performance and 

improving energy consumption on two basic memory organizations illustrated in Figure 

5.1-1.  

 

Figure 5.1-1 Candidate heterogeneous main memory organizations. (a) PCache: a 

hierarchical, inclusive system (b) HRank: a flat, exclusive system 

 

Figure 5.1-1(a) shows a hierarchical, inclusive system. The first layer of memory (1LM) 

is used as a buffer for the second layer of memory (2LM). The 1LM space is usually invisible 

to the operating system (OS) and managed by the memory controller (MC)[158]. A few works 

[142, 158] introduce policies to manage data for this hierarchical design. These policies treat 

the 1LM as an associative cache and use LRU replacement to migrate pages. In this work, we 

call these types of policy "PCache". 

Figure 5.1-1 (b) shows a flat, exclusive system. In this design, the 1LM and the 2LM 

have exclusive memory spaces. Both of the memory spaces are managed by the OS while the 

MC supervises the page migrations. Several works [159, 196, 209] have proposed policies to 

migrate pages in this flat design. These works use the following principles to design their 

migration policies: (1) place the performance-critical pages in the 1LM for performance and 

non-critical pages to the 2LM for low-power dissipation. (2) Rank pages based on the number 

of references and access recency. (3) Periodically migrate pages between the 1LM and the 

2LM based on the ranking history. We call these types of policy "HRank". Although the 
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above two types of memory policies show promising features for future computing systems, 

unfortunately, none of them are guaranteed to deliver and high performance and energy 

efficiency. As we shall demonstrate later, the effectiveness of these policies depends on the 

workload. 

 

In this chapter, we propose HpMC, a new memory controller design which employs the 

hybrid use of the PCache and HRank policies to deliver better performance and energy based 

on system demand. The HpMC consists of a ―Hybrid-policies Switching Engine‖ (HpSE), and 

several new components added to a vanilla MC to facilitate switching policies and migrating 

pages. In addition, HpMC implements an ―Energy-aware Controller,‖ (EaC). The EaC uses a 

locality engine, which periodically analyzes the degree of temporal locality based on reuse 

distance. If the degree of temporal locality crosses a certain threshold, it switches to PCache 

and switches back to HRank, or vice versa, to optimize energy consumption. We discuss the 

design of HpMC, including the switching mechanism in HpSE, the frame updating 

mechanism in the OS, and the potential cost of locality estimation in the EaC. HpMC is a 

hardware-software coordinating mechanism and manages pages without the limitations of 

previous work, including poor performance and energy caused by poor locality and high cost 

from updating mechanism.  

 

We evaluate the HpMC on our trace-based simulator, HMSim. HMSim uses AMD 

SimNow[15] for the processor simulation to generate memory traces that feeds to 

DRAMSim[164] to get cycle-accurate memory performance and energy estimation. SimNow 

is a functional simulator, which enables 10-100x speedups over cycle-accurate approaches but 

lacks timing precision and accuracy. We propose a novel IPC calibration model to improve 

the precision and accuracy of the timing system in SimNow. In addition, we validate HMSim 

against two state-of-art native systems by comparing their bandwidth, latency and power. 
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Furthermore, we discuss our engineering efforts on re-architecting DRAMSim for the PCM 

system, and validate the PCM performance by comparing the numbers against others in the 

prevailing literature. 

We use pF3D and LULESH, two representative HPC workloads, as our case studies to 

understand how the PCache and HRank policies impact performance and energy. The results 

demonstrate that both policies exhibit excellent performance and energy only for certain 

workloads. We further analyze the spatial and temporal localities of over 3000 diverse 

memory access patterns from the workloads of Coral Benchmarks[11] and lmbench [141], 

and use the analyzed results to build the switching rule for the EaC to optimize energy.  

HpMC can be configured in three modes: HRank-only, PCache-only and EaC mode. We 

evaluate the HpMC performance using workloads from the Coral Benchmarks and lmbench 

running on a 4-way, out of order processor. We compare the bandwidth, energy and latency of 

HpMC using the three modes with a single layer DRAM system and a PCM system. The 

results show that the HpMC delivers better energy efficiency compared with its HM 

counterparts and improves energy consumption from 13% to 45% while providing almost the 

same bandwidth and larger capacity than the DRAM system.  

This work makes the following contributions: 

• We propose a new memory controller design which employs the hybrid use of the 

PCache and HRank policies to deliver better performance and energy. We conclude 

that no single HM policy delivers better bandwidth and energy. Our study 

demonstrates that better performance and energy can be achieved by hybrid use of 

these policies through a well-designed MC. 

• We analyze the spatial and temporal localities of over 3000 diverse memory access 

patterns and identify the correlation between localities and energy consumption 

using two policies. 

• We validate our simulation framework against two state-of-art native machines and 
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propose a novel timing calibration model to improve the accuracy of the simulation. 

 

Both PCache and HRank policies are designed to exploit the combination of two memory 

technologies into a single, heterogeneous system. They assume the 1LM is designed for 

performance, and the 2LM is designed for high-capacity and low static power. We assume 

DRAM technology for the 1LM and PCM technology for the 2LM in our work, but the 

flexibility of our simulation framework will support other emerging memory technologies, 

such as HMC [152], STT-RAM, [42], and  memristors [49, 63]. 

 

Figure 5.2-1 Hybrid Policies Memory Controller simulation framework. 

A block diagram of the major components of our HM simulation framework, HMSim, is 

illustrated in Figure 5.2-1. In this section, we focus on the design of a hybrid policies memory 

controller, HpMC. The HpMC consists of two parts: HMController and DRAMSim [164]. 

HMController is an in-house, programmable, AMD SimNow [15] analyzer that SimNow 

loads into its execution environment. It is designed to process the read/write requests from the 

LLC controller and route requests to specific memory layers based on policies. HMController 

implements the two basic policies, PCache and HRank. It also implements a ―Hybrid-policies 
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Switching Engine‖ (HpSE) and several logic blocks (illustrated in the shaded blocks in 

Figure 5.2-1) to switch policies, manage frames and update migrations to the OS. We start 

with a detailed implementation of the HRank and PCache designs. After that, we describe a 

few new components added to a vanilla MC to assist the HRank and PCache and facilitate the 

dynamic switching between them. Lastly, we discuss the DRAM and PCM physical interface, 

simulated by the DRAMSim that estimates the cycle-accurate memory performance and 

power. 

 

 

1) PCache Policy: PCache is used to manage memory for the hierarchical, inclusive 

system. We base our design on the best available [158] which uses the DRAM as a hardware 

cache for the PCM. The PCM space is managed by the OS, and the DRAM is managed 

entirely by the MC without the OS involvement when a frame miss happens in the DRAM. 

The DRAM is implemented as an associative cache with an LRU replacement policy. On a 

miss in the DRAM, the frame that contains the cache line in the PCM will be brought to the 

DRAM. It uses an inclusion bit to indicate whether a frame holds a copy in PCM or not, and 8 

dirty bits to track dirty sub-blocks of a frame. PCache adopts a lazy write-back strategy to 

reduce the write operations to PCM. In the lazy write-back strategy, when a frame is evicted 

in the DRAM, the write-back operation only happens when the inclusion bit is set to 0, or any 

of the dirty bits is set 1. PCache leverages a Remap/Migration Table in MC to keep track of 

the mapping between PCM frame IDs and DRAM frame IDs. When a memory request arrives, 

the MC checks the Remap/Migration Table to see if the requested frame is cached in DRAM 

or not. It also supports the line-level writes technique that the MC only writes dirty sub-blocks 

back to PCM to reduce the traffic [158]. 
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2) HRank Policy: HRank is used to manage the flat, exclusive system. Our 

implementation leverages the idea of hot-cold frames [159, 196, 204]. Previous work uses a 

Multiple-Queue (MQ) ranking system [217] to rank the frames based on access recency and 

adjacency. In contrast, our HRank implementation ranks the frames according to the number 

of references. It updates the number of references of frames using a ranking list. For every 10 

ms epoch, it re-selects the top-N hottest frames from the ranking list to move to the DRAM, 

and keeps the rest of frames in the PCM. It maintains a hot and a cold list to keep track of hot 

and cold frames. HRank compares the new ranking result with previous ranking result (in the 

hot, cold lists) and decides which frames to move in/out of DRAM and PCM. It then 

schedules migration frames to the queue of the Migration Engine. The HRank algorithm is 

simple but effective. It simplifies the design of MC since it only needs to update the 

references and rank/migrate frames every 10 ms. In contrast, MQ-based algorithms need to 

update the entire complicated MQ ranking system and decide page migration whenever a 

memory reference occurs
1
. HRank uses the Remap/Migration Table to keep the migration 

history. The MC periodically updates the migration history in the Remap/Migration Table of 

the OS to keep the system consistent and robust. 

 

1) Switching Mechanism: HRank and PCache have a fundamental difference in memory 

organization: PCache is an inclusive system in that the 1LM space is invisible to the OS, 

while HRank is an exclusive system that both 1LM and 2LM spaces can be seen by the OS. 

When HpSE switches from one policy to another, it needs to guarantee the OS is aware of the 

change to the inclusion/exclusion property. 

                                                 
1
 Ramos et al. improved the MQ algorithm by filtering out some rapid-fire accesses. However, it needs to control 

the filtering threshold to avoid hot frames stay in the PCM. 
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When HpSE decides to switch from PCache to HRank, 1)the HpSE interrupts the CPU 

and notifies the OS to update the page table entries (PTEs); 2) the OS replaces the old PCM 

frame IDs with new DRAM frame IDs in PTEs and flushes the corresponding TLB entries 

according to the Remap/Migration Table; 3) the HpSE frees the PCM frames stored in the 

Remap/Migration Table since the HRank does not need the PCM space to hold duplicates; 4) 

the HpSE cleans up the information in the Remap/Migration Table and uses it to track the 

migration history. 

When the HpSE switches from HRank to PCache, it needs to change from the exclusive 

property to inclusive property. First, the HpSE notifies the Migration Engine to cancel 

scheduled migrations and cleans up the Remap/Migration Table. Second, the HpSE starts to 

the restore inclusive property. The HpSE checks the hot list in the HRank policy to get 

DRAM frame IDs and allocates unused frames in the PCM to restore the <DRAM,PCM> 

mapping in the Remap/Migration Table. If PCM does not have enough unused space to 

restore the inclusive property, the HpSE needs to vacate the least frequently used frames in 

PCM by checking the cold list for sufficient space. The HpSE then moves the vacated frames 

to a removing list. Lastly, the HpSE notifies the OS to replace old DRAM frames with new 

PCM frames in the PTEs based on the new Remap/Migration Table. If the HpSE sends the 

remove list information to the OS, the OS invalidates the corresponding PTEs in the page 

table and flushing TLB entries and programs the DMA engine to write dirty frames back to 

the hard disk. 

 

 

The Remapping/Migration table is used in both of the PCache and HRank policies. Each 

entry of the table has two columns to record frame IDs and several bits. In the PCache policy, 

two columns are used to track the mapping between DRAM frame IDs to PCM frame IDs. In 
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the HRank policy, the two columns are used to track migration history. The first column 

records the source frame IDs and the second column records the destination frame IDs. The 

MC periodically updates the migration history to the OS to keep the system robust and 

efficient. Each entry has an inclusion bit and 8 dirty bits used in the PCache policy as 

described before. 

In addition, we leverage other work [159] which uses two additional bits in the 

Remapping/Migration table for the communication between the MC and OS. The first is the 

Migrating bit. When the bit is set, it means that the frame is currently in migration status. The 

second is the Replacing bit, which is set by the OS when the OS is replacing the content of the 

frame. The OS is responsible for the Replacing bit and the MC is responsible for the 

Migrating bit. To maintain the robustness of the system, Replacing and Migrating bits are 

exclusive and cannot be set at the same time. The Remap/Migration Table is maintained by 

both the MC and OS. To guarantee the atomic operation on the table, the OS and MC use a 

memory-mapped register in the MC as the atomic operation token. 

 

The Migration engine uses a queue to record the scheduled migrations. It processes the 

migrations sequentially. In each migration, it reads the source frame into a buffer and sets the 

Migrating bit to 1. Once the Migrating bit is set, it writes the content of the buffer to the new 

destination and resets the Migrating bit when it finished. When a memory request arrives, it 

checks the Migrating bit to see if the frame is undergoing the transfer. During the migration, if 

the memory request is READ, it reads the data from the source frame; if the request is 

WRITE, the Migration Engine cancels the migration and finishes the write operation. 
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The Energy-aware Controller (EaC) periodically uses the locality engine to keep track of 

the reuse distance distribution to calculate the degree of temporal locality, Mt. EaC switches 

between PCache and HRank policies to optimize energy based on the degree of the Mt. As we 

shall demonstrate later, the energy consumption of both policies has a strong correlation to the 

Mt. Reuse distance analysis is a popular tool for predicting locality and performance. 

However, several works [103, 169] have shown that the performance penalty is a major 

drawback of the tool in software-based, cache systems. Zhong and Chang report 2-4x 

slowdown using compiler-based instrumentation for single-thread benchmarks [41]. Schuff et. 

al. report averaging 29x slowdown with 19.6% sampling rate for multi-thread benchmarks 

[169]. 

We argue that the overhead of reuse distance in main memory is negligible and feasible 

for online estimation with the help of additional hardware for the following two reasons: 1) 

The traffic in main memory is 40-100x smaller than in the cache system. Thus, the estimation 

overhead can be drastically reduced. 2) Several stochastic models have been proposed to 

approximate the reuse distance online with small computation cost. Shen et. al. [171] 

proposed a small hardware analysis device with a stochastic model that maps cheaper time 

distance to a more expensive reuse distance within 1% prediction error. Their approach can 

achieve the reuse distance estimation within 3-8 us. Since the updating period of the EaC is 10 

ms in our implementation, the computation overhead (3-8 us) for Mt is relatively small and 

negligible. For the space overhead, the locality engine uses sixteen 64-bit counters to estimate 

Mt. Each counter i stores the number of memory references that the reuse distance is between 

2
i 
to 2

i+1
. Thus, the space overhead is only 128Bytes. 
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HMSim uses a trace-based approach to simulate the system. It has two steps. In the first 

step HMSim uses the HMController to collect memory traces of DRAM and PCM during the 

execution. In the second step, HMSim feeds the memory traces to the DRAMSim to analyze 

the performance and energy. HMSim leverages the DRAMSim to simulate the DRAM and 

PCM PHY interface. 

DRAMSim is a cycle-accurate memory system simulator designed for modeling DRAM 

DDRx memory systems. It models a memory controller to issue commands to DRAM devices. 

The memory system contains load/store queues and a command queue, and maintains the 

bank states of all DRAM devices to simulate the performance. DRAMSim simulates different 

types of DDRx technology through device ini files, which parameterizes major characteristics 

of the DDRx timing mechanism. In addition, we re-architect memory array architectures in 

the DRAMSim to simulate the PCM memory system. For convenience in our discussion, we 

call the re-architected DRAMSim for the PCM system, PCMSim. The PCM performance 

simulated by PCMSim is discussed in the validation section. 

 

A key challenge for enabling high-performance heterogeneous memories is to design a 

cost-effective metadata system (e.g., Remapping/Migration table) at a fine granularity. Table 

5.2-1 shows the storage overhead of the HpMC with 1GB DRAM + 8GB PCM memory. For 

each component in the HpMC, HRank needs 9MB in total to maintain the hot, cold and 

ranking lists. PCache only needs the Remapping/Migration Table to track the DRAM and 

PCM mapping. Thus, we assume PCache use 0MB in Table 5.2-1. In addition, each entry in 

the Remapping/Migration table requires 55bits for storing tags (22*2 bits two column frame 

IDs, 1 inclusion bit, 8 dirty bits, 1 migrating bit, 1 replacing bit). The queue size of the 
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Migration Engine is 1.5MB (44bits for source and destination frame IDs * 256K queue size). 

Lastly, the locality engine needs 128 Bytes to track the reuse distance distribution in our 

implementation. The total storage overhead for 1GB DRAM + 8GB PCM memory setting is 

12.26 MB. For fast access, we assume that the storage in all the components in the MC is 

made of SRAM. 

 

Table 5.2-1 STORAGE OVERHEAD 

Component Storage overhead  

HRank 

9MB 

16bits reference counter* (256K hot list + 2M cold list + 2.25M ranking list)  

PCache  0MB  

Migration Engine 
1.5MB 

44 bits * 256K entries 

Remap/Migration 

Table 

1.75MB 

55 bit tags* 256K entries  

Locality Engine 
128Bytes 

16 counters * 64bits  

Total Size 12.26MB  

 

 

 

HMSim uses AMD SimNow for the processor simulation. AMD SimNow is an 

x86-compatible, multi-core simulation platform. It is a functional simulator in that its device 

models maintain the program-visible machine state, but the device models abstract the timing 

feature for faster simulation of the entire computer system. Although HMSim can leverage 
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faster simulation in SimNow to explore applications at large scale, accuracy is a major 

challenge. 

The basic timing unit of SimNow is an instruction; all instructions are assumed to execute 

in the same amount of time and are one clock cycle in length. This assumption may overlook 

the performance when long latency events (e.g. memory and page fault) dominate the 

execution. It is common that intensive memory events may cause inevitable memory stalls, 

and memory latency is longer than one clock cycle. The assumption in SimNow that "IPC is 

equal to 1" for every application is over-simplified and can skew performance estimation. 

Fortunately, SimNow provides an interface to set an IPC value for each application. We 

use the MEM.BW benchmark from lmbench to illustrate how the IPC setting affects memory 

bandwidth in Figure 5.2-1.  

 

Table 5.3-1 The effect of the SimNow IPC on bandwidth 

 

We ran the MEM.BW multiple times in HMSim simulating a single-layer DRAM system 

and manually varied the IPC from 0.05 to 1.0. In each run, we measured the SimNow LLC 
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controller bandwidth and collected its memory trace. We fed the trace to DRAMSim to 

simulate the memory bandwidth of an 8GB, 4channel, DRAM DDR3-1333MHz system. The 

result shows that the bandwidth request from the LLC controller is proportional to the IPC 

settings in SimNow. In addition, DRAMSim result shows that the DRAM system bandwidth 

is saturated when IPC is greater than 0.4. This result indicates the IPC value configured in 

SimNow significantly impacts the demand for bandwidth from the LLC controller and the 

memory system performance estimation. Setting the IPC equal to 1 for all applications would 

lead to inaccuracies. For example, MEM.BW setting IPC to 1 generates 142GB/sec from the 

SimNow LLC Controller to the memory system (DRAM), and this number is far beyond what 

most contemporary computing systems can accomplish. 

We also want to ensure the performance estimation of PCM system is within the ballpark 

of performance numbers found in the extant literature. Despite similarities to conventional 

DRAM memory array architectures, PCM requires solutions to several drawbacks before it 

can see widespread adoption as an alternative of DRAM, including long latency, high energy 

of write operations and limited endurance.  

 

 

We need to address both aforementioned challenges: 1) direct timing calibration against 

local systems, and 2) comparison to other prevailing systems mentioned in the literature. To 

address these challenges, we divide the validation into two parts. In the first part, we describe 

a timing calibration model to predict a proper IPC to calibrate SimNow performance. We then 

compare the simulated results after the model calibration with two native computing systems 

to show that the HMSim framework is sufficiently accurate for performance evaluation. In the 

second part, we discuss our efforts on re-architecting the DRAMSim for the PCM system, and 

validate the simulation performance by comparing with systems described in the prevailing 
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literature. 

The main architectural characteristics of the simulation framework are listed in Table 

5.3-2. In this work, HMSim simulates a four-core, out-of-order processor equipped with an 

8MB, 2-way instruction and data cache. The HMSim simulates a two-layer, heterogeneous 

memory system. It has four DRAM channels and four PCM channels; each channel has two 

DIMM ranks. In all simulations, it assumes no cold page faults and all data are all in 2LM. 

The DRAMSim and PCMSim use the close-page policy initially.  

Table 5.3-2 SIMULATION SYSTEM CONFIGURATION 

Feature Value/Configuration 

Processor 

Processors (800MHz, x86-ISA) 4-way out-of-order processor 

I/D Cache 2-way, 128M lines, 64 Byte 

TLB 128-entries 

Cache block size/ page size 64 Byte/4KB 

Memory Systems 

Memory Controller 

1333MHz, 4channels, 8KB row size, 

close page, 

Mapping Scheme 7 

Memory Devices (8x width, 

1.5V) 
DRAM PCM[24], [35] 

Delay 

tRCD 15ns 55ns 

tRAS 36ns 71 ns 

tRC 51ns 126 ns 

tRP 15ns 55 ns 

Current 

Idd0 130mA 240mA 

Idd 2N 40mA 40mA 

Idd 3N 62mA 62mA 

Refresh 240mA 0mA 

 

We validated HMSim performance against two native computing systems. The first 

system was a single-socket server with an 8-way (2x hyper-threading) Intel Westmere 

processor and an integrated memory controller supporting 3 memory channels of DDR3 
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DIMM; each DIMM has 2GB memory capacity. The second one is a server specifically 

designed for optimizing performance and energy efficiency. It has an 8-way (2x 

hyper-threading) Intel Haswell processor and dual-channel DDR3 memory system with 8GB 

capacity.  

1) IPC Calibration Model:  

We propose an IPC calibration model to calibrate the SimNow timing mechanism. The 

goal of the model is to predict a proper IPC value for each application to generate the same 

amount of demand for bandwidth from the SimNow LLC controller as that found in native 

machines. The model predicts the IPC of an application in SimNow by using the input from 

the native execution. The input includes the native measured IPC and a set of hardware event 

rates (            ). We select events listed in Table 5.3-4 that are critical to system 

performance, including the memory controller reads and writes, L1, L2, L3 hits, floating point, 

branch, and TLB misses. All selected events can be found in most contemporary processors. 

Each event rate,   , is the number of occurrences of event i divided by the number of elapsed 

processor cycles during the execution. We model the SimNow IPC as a linear function of the 

native IPC and event rates: 

 

Equation 5.3-1:                          ∑        
 
    

 

We trained the relation in Equation 5.3-1 with event coefficients                by 

using multivariate regression. We first collected the IPC, event rates and bandwidth from 

benchmarks listed in Table 5.3-3 as training samples from native machines. We then ran the 

same benchmark on the HMSim using a single-layer DRAM and manually selected the 

SimNow IPC value that generates the same amount of bandwidth from the SimNow LLC 

Controller as the bandwidth collected in native machines to be the prediction target. We list 

the coefficients used in the model after training in Table 5.3-4 . In the next section, we 
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compare the performance of HMSim using the IPC calibration model with the two state-of-art 

computing systems described above. 

Table 5.3-3 BENCHMARKS FOR EVALUATION 

Program Description  Source 

CNS.STENCIL 
A simple stencil-based test code for 

computing the hyperbolic components 

ExaCT Co-Design 

Center 

UMTmk 

A microkernel performing three dimensional, 

nonlinear, radiation transport calculation CORAL 

Benchmark 

CORAL Benchmark 

Graph500 
A scalable data generator and a BFS search 

kernels  
CORAL Benchmark 

MILCmk 
A microkernel for the MIMD Lattice 

Computation (MILC) collaboration  
CORAL Benchmark 

AMGmk 
A microkernel for parallel algebraic multi-grid 

solver for linear systems  
CORAL Benchmark 

LULESH 
A proxy-app for the hydrodynamics 

simulation 
CORAL Benchmark 

pF3D 
A parallel code for laser plasma interactions 

simulation 
LLNL NIF 

MEM.BW 
A benchmark from lmbench to measure the 

memory bandwidth  
lmbench 

MEM.LATE 
A benchmark from lmbench to measure the 

memory latency 
lmbench 

 

Table 5.3-4 IPC MODEL EVENTS AND COEFFICIENTS 

Event Coefficient Event Coefficient 

IPC 0.36 FLOAT_INS 0.15 

L1_HIT 1.31 TLB_MISS 0 

L2_HIT 0.175 MEM_RD 5.07 

L3_HIT 0 MEM_WR 10.7 

BRANCH_INS -0.66 
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We validated the performance of HMSim configured with a single-layer DRAM system 

using three benchmarks: MEM.BW, MEM.LATE and AMGmk by comparing simulated 

bandwidth, latency and power with the results measured in the two native systems. The 

memory bandwidth and latency validation with the Westmere machine and the memory 

power validation with the Haswell machine are discussed below: 

1) Bandwidth: We ran MEM.BW to compare the bandwidth in eight operation modes (rd, 

wr, cp, frd, fwr, fcp, bzero, bcopy, rdwr). We used the LIKWID [191]tool to measure the 

native memory bandwidth on the Westmere platform. The LIKWID tool counted the total 

number of DRAM CAS read and write commands issued on all channels from the integrated 

memory controller. Each DRAM CAS read and write command transfers 64 bytes of data 

(JDEDEC standard). The native bandwidth was calculated as the total transferred data size 

divided by the elapsed time. The top left chart in Figure 5.3-1 shows the normalized 

bandwidth from HMSim and the Westmere system. The results are in different operation 

modes with an average error rate is 6.1%. 

2) Latency: We used the MEM.LATE benchmark from lmbench and varied stride sizes 

from 64 to 4096 to validate the latency. On the Westmere system, we used the Intel VTune 

Amplifier [7] to measure the memory latency distribution using different stride sizes. 

According to the Intel spec[1], we excluded the events smaller than 32 cycles (i.e. oncore 

accesses) to ensure the memory accesses are all uncore events and calculated average latency. 

The top right chart in Figure 5.3-1 shows the normalized simulated and native measured 

latencies. We normalized all simulated and native results to MEM.LATE.64 (i.e. stride size 

=64). In both simulation and native results, we can see the latency reduces when the stride 

size increases. This is because, when the MEM.LATE benchmark traverses same size of data, 

larger strides access the memory system less frequently than smaller strides and alleviate the 
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waiting time in the transaction queue of the MC. Although the degree of degradation is 

different, we can see HMSim still gracefully captures the trend of degradation. 

3) Power: The bottom chart in Figure 5.3-1 shows the normalized power using 

MEM.BW, MEM.LATE and AMGmk. We ran AMGmk with three input sizes: 50,100, 200. 

We measured the native DRAM power through the Intel RAPL [59] on the Haswell machine. 

RAPL is a counter-based weighted model that estimates the DRAM power as a function of 

activity counters and pre-defined associated weights. The counters used in RAPL are 

described in a related paper [59]. DRAMSim uses a different method to model the power. It 

uses elapsed cycles and currents of different CAS commands to estimate power. Although 

they use different modeling approaches, the power estimation in DRAMSim still captures the 

trend as we measured in the Haswell. Our validation shows that, although the HMSim does 

not simulate identical results to those measured in native machines, it remains sufficiently 

accurate for performance evaluation. 

 

 

Figure 5.3-1 HMSim memory bandwidth, power and latency comparison with native 

systems 
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A PCM cell is a 1T/1R device, comprised of a storage resister and an NMOS access 

transistor. The storage resistor is typically a chalcogenide alloy. Ge2SB2Te5 is the most 

common material used in PCM. The PCM cell operates in two states. SET state represents bit 

value 0 and the crystalline phase while RESET state represents bit value 1 and the amorphous 

phase of the chalcogenide. PCM can be arranged in multiple level cells (MLCs) to store more 

states (phases) by applying different levels of heat that represent more bits. Our PCM system 

assumes three-bit MLCs, which provides four times the density of DRAM [27] [158] and 

gives the PCM similar cell area (         ) compared to DRAM (       ). Thus, 

PCM can leverage most CMOS peripheral circuitry used in traditional DRAM with minimal 

modifications. PCM cells might be hierarchically organized into ranks, banks, and blocks. 

Despite similarities to conventional DRAM memory array architectures, PCM has several 

drawbacks including limited endurance, increased write energy and latency; these must be 

addressed before widespread adoption in hierarchical or flat memories. The techniques to 

address these drawbacks include wear-leveling techniques [156, 158, 216] to remove 

non-uniformity writes to prolong the lifetime of system; buffer reorganization techniques to 

improve locality and reduce the delay and energy gap [80, 111]; partial writes techniques [111] 

[89, 155, 204] to trace data modification to improve endurance and energy; and the PreSET 

technique [24], which executes a PreSET operation for a memory line as soon as the line 

becomes dirty in the cache. Thus, all PCM cells that are required in a write operation have 

been SET prior to the write to reduce the latency. 

In this work, we built a PCM simulator, PCMSim. It re-architects DRAM memory logic 

from DRAMSim. PCMSim adopts buffer reorganization [111] and Data-Comparison Write 

(DCW) [204] techniques to improve PCM write latency and energy efficiency. We do not 

explicitly implement the wear-leveling since endurance is out the scope of this study, but 

buffer reorganization and DCW techniques may at least partially address the PCM endurance 
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issue. In addition, we assume future PCM systems support a PreSET-like mechanism, in 

which case, the write latency is effectively the faster ―RESET‖ latency instead of slower 

"SET" latency. 

 

Figure 5.3-2 MEM.BW Performance on PCM and DRAM(DDR3) systems 

We compare the PCM and DRAM performance by analyzing MEM.BW using the 

PCMSim and DRAMSim. Both memory systems used four channels and 8GB capacity. 

Figure 5.3-2 shows the performance of the two systems. The x-axis of the first three charts 

represents elapsed epochs. The unit of the epoch is 10 ms. The top left chart shows the total 

number of computation instructions and memory instructions to interpret the ratio of 

computation and memory activities. The top right shows the bandwidth variation of DRAM 

and PCM systems over time. The average DRAM bandwidth is 28.8GB/sec, and the average 



 110 

PCM bandwidth is 14.2GB/sec. The average DRAM latency is 359 ns, and the average PCM 

latency is 755 ns. The result shows that, under high-bandwidth conditions, DRAM 

outperforms than PCM. DRAM can support up to 2.0x bandwidth, 0.5x in access delay and 

consume 40% energy compared to PCM. 

 

Table 5.3-5 PCM V.S DRAM PERFORMANCE CHARACTERISTICS 

Performance PCM DRAM Ratio Range 

READ latency 55 ns 15 ns 3.7 3 - 6 

WRITE latency 55 ns 15 ns 6 5 - 30 

READ energy 3.56 pJ/bit 1.04 pJ/bit 3.4 2 - 8 

WRITE energy 12.35 pJ/bit 0.35 pJ/bit 35.5 10 -100 

 

 

Figure 5.3-3 Power Breakdown of PCM and DRAM(DDR3) systems using MEM.BW 
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Figure 5.3-3 shows the power consumption of the two systems. The peak power of PCM 

is 20.1 Watts and 8.2 Watts for DRAM power. We further break down the power into 

background, refresh, burst, read and write power. The simulation results show that PCM 

dissipates less static power (i.e. background) than the DRAM system. We summarize the 

simulated performance of PCM and DRAM in Table 5.3-5 and compare the numbers with 

recent literature [36, 85, 105, 111, 172]. The third column shows the ratio of PCM to DRAM 

performance in terms of latency and energy. The fourth column shows the range of the ratio 

suggested by the literature survey. Table 5.3-5 shows the simulation results are within the 

ballpark of the recent literature survey. 

 

We start with pF3D and LULESH, two representative HPC workloads, as case studies to 

analyze the bandwidth and energy of the HpMC using PCache and HRank polices. In addition, 

we analyze how dynamic spatial and temporal locality impacts energy consumption of both 

policies, and use the analyzed results to build the switching rule for the EaC to optimize 

energy. 

 

pF3D: Figure 5.4-1 shows the pF3D performance of HpMC using PCache and HRank policies. 

From a bandwidth perspective, the average bandwidth of the DRAM and PCM in PCache is 

8.17GB/sec and 0.76GB/sec. These values include the migration traffic between the DRAM and 

PCM. From the processor point of view, it can safely ignore migration traffic. Thus, we exclude 

the migration traffic to get the effective processor bandwidth. For the PCache policy, the 
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effective bandwidth is calculated using the Equation 5.4-1. Based on the Equation 5.4-2, the 

effect processor bandwidth is 7.43 GB/sec in the pF3D (i.e. 8.17-0.76). 

 

 

Figure 5.4-1 pF3D performance comparison using HRank and PCache policies in the 

HpMC 

 

Equation 5.4-1:                            

 

In contrast, the average bandwidth of the DRAM and PCM in HpMC using HRank policy 

is 8.6GB/sec and 3.12GB/sec. The effective processor bandwidth for the HRank policy is 

estimated by the Equation 5.4-2. 

Equation 5.4-2:                           
             

                          
 

 

      and       represent the traffic between the processor and the two memory layers, 

and            represents the migration traffic between the DRAM and PCM. Thus, the 
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effective processor bandwidth in HRank is 11.49 GB/sec (i.e.            
           

                
). 

In the pF3D case, HRank provides more bandwidth than PCache since HRank allows the 

processor to access the PCM directly.   

From an energy perspective, PCache consumes 167.6J energy during the execution and 

HRank consumes 218J. PCache use 24% less energy than HRank. When analyzing the traffic 

of the two policies, we found that, in PCache, the processor accessed 91.81GB of data in the 

DRAM while only 2.83 GB of data was from the PCM due to DRAM misses. In contrast, the 

processor accessed 21.44GB of data in the PCM and 73.45 GB of data in the DRAM when 

using the HRank policy. The additional memory accesses in PCM in the HRank system, lead 

to higher energy consumption for HRank versus the PCache in the pF3D case. 

LULESH: Figure 5.4-2 shows the LULESH performance using both policies. Based on 

Equation 5.4-3.and Equation 5.4-2, HRank provides 7.99GB/sec effective processor 

bandwidth while PCache delivers 7.91GB/sec, similar to HRank. From an energy perspective, 

HRank consumes 20% less energy than PCache (157.3J vs. 192.6J). We further analyze the 

traffic between DRAM and PCM for the two systems. PCache needs to transfer 24.49 GB of 

data between the DRAM and PCM to meet demand; 38.17GB of data from the processor. The 

effective processor bandwidth is only 61% (
     

             
) of the total 1LM bandwidth. 39% of 

the 1LM bandwidth was used for data migrations between the DRAM and PCM. In the 

previous pF3D case, PCache only needs to transfer 2.83GB of data between the DRAM and 

PCM to meet 91.81GB processor demands. The effective bandwidth is 97% of the total 1LM 

bandwidth.  

 



 114 

 

Figure 5.4-2 LULESH performance comparison using HRank and PCache policies in 

the HpMC 

In conclusion, we found that for certain workloads, HRank provides extra bandwidth due 

to the direct access to the PCM. We also found that when the DRAM hit rate was low, the 

PCache policy using LRU replacement became too aggressive in migrating data between the 

DRAM and PCM. The aggressive LRU replacement dampened the effective processor 

bandwidth and wasted energy due to excessive migrations. In contrast, HRank effectively 

delays the migrations. The periodical migration strategy in HRank conserves more energy 

when the DRAM hit rate becomes low. 

 

According to the above case studies, PCache leverages memory accesses with high hit 

rates in DRAM to conserve energy (pF3D). In contrast, HRank conserves more energy when 

DRAM hit rates are low (Lulesh). These findings lead to another consideration: can we 

leverage application locality to intelligently select the policy that conserves energy? 
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Hit rate can be characterized by two factors: access adjacency (spatial locality) and 

recency (temporal locality). To understand impact of locality on energy consumption, we use 

previously proposed metrics [197] to quantify the spatial and temporal locality of an 

application. The spatial locality is defined in Equation 5.4-4.         denotes the fraction of 

total memory accesses that are of page stride length i. An application that has all pages stride 

1 references is assigned a value of 1; an application where half of the memory references are 

stride 1 and the other half stride 2 is assigned a value of .75, and so forth. 

 

Equation 5.4-4 :     ∑
       

 

 
    

 

In addition, we quantify the temporal locality using the metric in Equation 5.4-5. The 

metric is based on the notion of the distance of data reuse. The reuse distance of some 

memory references to an address A is the number of memory references that have been 

accessed since the last access to A. In Equation 5.4-5, N denotes the longest reuse distance 

we traced (N= 512 in our study);        is the temporal reuse function and represents the 

fractions of memory references with reuse distance less than or equal to i. The temporal 

locality metric, Mt, is less intuitive than the spatial locality metric. We can visualize that the 

Ms value estimates the area under the plot of the temporal reuse function,       , of the 

application. Since        is monotonically increasing, the Mt value of an application that has 

more temporal locality is larger, because more memory references have low reuse distances. 

 

Equation 5.4-5:      ∑
                                   

     

        
    

 

The Mt and Ms scores range between [0,1]. Higher scores mean better locality than lower 

scores. The access stride and reuse distance are inherent program properties and independent 
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from any memory design. Thus, they are good indicators for program locality. To investigate 

the correlation of locality and energy consumption of two policies, we built a 2D (Ms, Mt) 

locality map for each benchmark listed in Table 5.3-3. Results for pF3D, LULESH, AMGmk, 

MILCmk, Graph500 and UMTmk are shown in Figure 5.4-3. The x-axis of each map 

represents Ms and y-axis represents Mt. A circle at position (x,y) on the map represents a small 

period (10 ms epoch) of execution in an application with Ms = x and Mt = y estimated from 

memory traces of the period. We also estimated the energy consumption of the epoch using 

PCache and HRank policies and chose the resulting lowest energy policy as the winning 

policy. If PCache wins in an epoch with the locality scores Ms = x and Mt = y, the map plots a 

green circle at position (x,y) on the map; if HRank wins, the map plots a blue circle. The size 

of the circle is used to represent the ratio of energy consumption of the losing policy to the 

winning policy. The bigger the circle, the better energy saving of the winning policy over the 

losing one. We analyzed diverse memory patterns from over 3000 epochs from the above 

benchmarks. In Figure 5.4-3, we see PCache wins for most epochs in pF3D, MILCmk and 

UMTmk. Since the circles in the MILCmk and UMTmk are small, there is not much energy 

difference between two policies. We also observed that blue circles dominate in the LULESH 

case while some green circles clustered on the top-right. 
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Figure 5.4-3 The correlation between locality and energy consumption of HRank and 

PCache policies 

In addition, the rightmost charts show statistical histograms of occurrences of Ms and Mt 

values from the winning policy of all epochs in all applications. In the Ms histogram, we see 

both policies mixed spanning from 0.1 to 1. This result indicates that Ms is not a good 

indicator for selecting the winning policy. Spatial locality may be adversely affected by 

multi-core, out-of-order, parallel execution. In contrast, the Mt histogram shows that the 

PCache policy favors higher Mt (greater than 0.65) while the HRank system favors lower Mt 

(less than 0.65). When the Mt is high, the data in a page will be reused again soon and the 

page has a higher chance of remaining in DRAM without being evicted. In contrast, when Mt  

is low, the reuse of a page in DRAM is low, and the page has a higher chance of being evicted 

in the PCache policy, resulting in more energy consumed in migration. In this case, HRank 

can reduce energy consumption by less frequently migrating data and simply allowing the 

processor to access the PCM directly.  

 

 

We now show the energy consumption of EaC mode in the HpMC. EaC enables 

dynamically switching between PCache and HRank policies. The EaC periodically checks the 

temporal locality, Mt, and decides if it needs to switch to another policy or not. EaC sets the 

switching period to be 10ms and uses the locality engine to calculate Mt. Based on previous 

Mt histogram results, we build a switching rule as follows: If Mt ≥0.65, EaC switches to 

PCache mode. If Mt < 0.65, EaC switches to HRank mode. Figure 5.5-1 illustrates the energy 

consumption of PCache mode, HRank mode and EaC mode of pF3D and LULESH. The 

results indicate that the hybrid approach using EaC intelligently selects the low energy system 
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over time with negligible prediction error. It improves energy consumption by 23%( 
       

    
 ) 

in pF3D and 20%( 
       

      
 ) in LULESH, compared with the worst case energy use. 

 

Figure 5.5-1 Energy consumption of PCache, HRank and EaC modes 

 

We evaluate the performance of the HpMC using three modes: PCache, HRank and EaC 

modes. We compare them with a DRAM-only system and a PCM-only system. The DRAM 

system uses 64GB, single-layer, 4-channels, DDR3- 1333 memory. The PCM system also 

uses a single-layer memory with 64GB capacity. We select 64GB for the DRAM and PCM 

systems as the base memory capacity since this is the common setting for state-of-art HPC 

systems. In the HpMC configuration, we use 8GB DRAM in the 1LM and 64GB PCM in the 

2LM. The 1:8 ratio of 1LM to 2LM is our empirical selection which balances performance 

and energy consumption. We use the benchmarks listed in Table 5.3-3 to evaluate the 

performance and the result is illustrated in Figure 5.5-2. We sorted the benchmarks based on 

DRAM system bandwidth from left to right. 
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Figure 5.5-2 Bandwidth, energy, latency comparison of DRAM, PCM, and three 

modes in HpMC 

 

The top chart in Figure 5.5-2 shows the effective processor bandwidth calculated using 

Equation 5.4-1 and Equation 5.4-2. We normalized the bandwidth to the DRAM system. 

The MEM.BW benchmark is used to measure the peak bandwidth of all settings. In 

MEM.BW, DRAM delivers best bandwidth performance, and PCM provides about 70% the 

bandwidth of DRAM. In HpMC, the HRank mode can deliver roughly the same bandwidth as 

the PCM while PCache has the worst bandwidth performance. This is because the MEM.BW 

benchmark is programmed to sequentially access memory addresses. Thus, the spatial and 

temporal localities are very low. In this case, PCache mode becomes inefficient since the 

policy design only allows the processor to access the DRAM, and much of DRAM bandwidth 

is used for data migration. Instead, HRank mode allows the processor to directly access the 

PCM and thus provides more bandwidth. We see the same phenomenon in pF3D, AMGmk, 
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Graph500 and UMTmk. In UMTmk and Graph500, we found HRank bandwidth performance 

is even better than DRAM. This is due to more bank conflicts in the DRAM. 

The middle chart in Figure 5.5-2 provides the energy consumption. We normalized the 

energy to DRAM. In the low bandwidth scenario (i.e. applications on the left), PCM 

consumes less energy than DRAM due to less static power dissipation. When bandwidth 

increases from left to right, the energy ratio of PCM to DRAM also increases from 0.59 

(CNS.STENCIL) to 1.92 (MEM.BW), because PCM uses more dynamic write power than 

DRAM. We found PCache and HRank modes conserved more energy than traditional DRAM 

in all cases except MEM.BW. The energy savings ranged from 13% to 45%. The PCache 

conserved more energy than HRank in MEM.BW, pF3D, MILCmk, UMTmk and 

CNS.STENCIL benchmark while HRank conserved more in LULESH, AMGmk and 

Graph500. In the EaC mode, we can see that EaC dynamically choses the lowest energy 

policies to optimize energy, however it may sacrifice performance on certain workloads (i.e. 

MEM.BW and pF3D).  

The bottom chart in Figure 5.5-2 reports latency of all memory systems. *.1LM and 

*.2LM represent the DRAM and PCM latency of the HpMC using three modes. We only 

model the latency of memory systems without consideration for the cost for MC migration 

and OS update since they are not always on the critical path of a memory access. In low and 

moderate bandwidth scenarios (i.e. CNS.STENCIL to AMGmk), we can see the latency of 

three HpMC modes are similar to the DRAM system. In the high bandwidth scenario (i.e. 

LULESH, PF3D and MEM.BW), we see the PCM latency in the three modes of HpMC is 

higher than the DRAM system. This is inevitable since the PCM is highly utilized; however, 

the latency can be hidden by a high degree of parallelism on the processor. 
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    PCache: The implementation of PCache policy is similar to the LRU policy in the 

systems. The migration unit of PCache is a page, not a cacheline. The cost of a page miss in 

the DRAM is high because the MC needs to migrate 4KB data per DRAM miss by default. 

PCache uses the lazy write-back strategy to trace the dirty sub-blocks and only write the 

dirty sub-blocks to the PCM. This strategy reduces the total migration traffic between the 

DRAM and the PCM. The lazy write-back strategy works well in cache systems; however, it 

could be a potential issue when we apply it to HM. The space overhead of the metadata 

system needed for the DRAM cache to trace dirty sub-blocks is significant. In addition, the 

MC needs fast access to the metadata to keep a low latency when the MC updates the state 

of pages in the metadata system. Recent works [96, 102, 128, 157] propose new designs 

using SRAM, 3D die-stacked DRAM to improve metadata system performance. This work 

only discusses the space overhead, but we need a deeper understanding of the metadata 

system performance. Some cost models are required to estimate the performance and the 

power of the metadata systems. 

    In addition, PCache relies on a high hit rate of the DRAM. When the DRAM hit rate is 

low, the DRAM will sacrifice a large portion of bandwidth for data migration, and this 

affects the available bandwidth for the processor. Based on our observation, PCache 

performs poorly for low spatial and temporal workloads because low locality means a low 

hit rate in the DRAM. We use pF3D and Graph500 to explain it. pF3D demonstrates high 

locality due to its stencil execution behavior. Graph500 exhibits low locality behavior due to 

its bread-first search kernels. Figure 5.6-1 and Figure 5.6-2 shows the traffic of Graph500 

and pF3D. In Graph500, we see the HM system needs to migrate 10.97 GB size of data 

between the DRAM and the PCM (i.e. 1LM-2LM) for 55.57 GB of data from the processor 
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to DRAM. The ratio of migration for Graph500 is 19.74 percent (
     

     
). On the other hand, 

we see the HM system only needs to migrate 2.83 GB size of data between the DRAM and 

the PCM (i.e. 1LM-2LM) for 91.87 GB of data from the processor to the DRAM. The ratio 

of migration for Graph500 is 3 percent (
    

     
). 

 

 

Figure 5.6-1 Traffic of Graph500 using PCache policy 

 

Figure 5.6-2 Traffic of pF3D using PCache policy 
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  HRank: HRank policy uses a different strategy to migrate pages. It does not migrate a 

page when a miss happens in the DRAM. Instead, it periodically ranks the number of 

accesses of all pages and moves the performance-critical pages to the DRAM. The slow 

response strategy benefits low locality workloads because it lets the processor directly 

access the page in the PCM and avoids migrating the page to the DRAM, because the 

migration tends to be less useful due to low spatial or temporal locality. The epoch length is 

a major factor that affects the policy’s performance. If the epoch length is too short, the 

HRank policy cannot trace enough ranking information to migrate performance-critical 

pages to the DRAM. In addition, the short epoch length also leads to performance overhead 

due to frequent migration. On the other hand, if the length is too long, it may cause the 

performance-critical pages to stay too long in the PCM, harming the overall system 

performance and consuming extra energy. The proper choice of epoch length is the key to 

performance and energy efficiency of the HRank policy. In our study, we manually selected 

10ms as the default setting based on our system settings. However, the length of the epoch 

depends on several factors, including the DRAM size and the frequency of the memory bus. 

One of our future works will provide a sensitivity analysis for the epoch length to different 

system settings.      

  Summary: First, we found that, for high-temporal locality workloads, the MC needs to 

apply PCache policy to conserve energy; for low-temporal locality workloads, the MC can 

choose HRank to conserve energy. Second, the hierarchical, inclusive memory organization 

used for PCache policy only lets the processor access the DRAM. The PCM is used for 

migration when the DRAM misses or pages write-back. The processor cannot leverage the 

PCM bandwidth from this organization. On the other hand, the flat, exclusive organization 

used in the HRank policy provides extra PCM bandwidth for the processor due to direct 

access; however, this organization causes long access latency in the PCM. For HPC 

applications with high memory bandwidth requests, I suggest using flat organization with 
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HRank policy since the latency can be hidden by a high level of processor concurrency in 

the HPC systems.  

 

   In previous sections, we demonstrated how we leverage the locality analysis to help HM 

systems improve performance and energy consumption. The variation of locality comes 

from different memory access patterns. In this section, we discuss how different memory 

access patterns affect the performance of policies. We use a matrix multiplication to 

illustrate the impact. Sparse matrix multiplication is the most time-consuming part in PDE 

(Partial Differential Equation) solvers, which are widely used in many HPC applications.  

 

 

Figure 5.6-3 Pseudo codes of matrix multiplication using (i, j, k) and (k, j, i) memory 

access patterns. 

  Figure 5.6-3 shows two pseudo codes of matrix multiplication using two memory access 

patterns. The left codes use (i, j, k) order in the loops. The right codes use (k, j, i) in the 

loops. The two codes yield the same results in matrix C, but the right codes have a larger 

memory access stride than the left codes. It is easy for programmers to write their own codes 

Matrix multiplication 

Memory Access Pattern: Loops (i, j, k)  

 

#define N 1024 

# matrix multiplication (i, j, k) 

for(i=0; i<N; i++) 

for(j=0; j<N; j++) 

for(k=0;k<N; k++)  

{ 

       C[i][j] += A[i][k]*B[k][j]; 

}; 

Matrix multiplication 

Memory Access Pattern: Loops (k, j, i) 

 

#define N 1024 

# matrix multiplication (k, j, i) 

for(k=0; k<N; k++) 

for(j=0; j<N; j++) 

for(i=0;i<N; i++)  

{ 

       C[i][j] += A[i][k]*B[k][j]; 

}; 
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similar to the example in the right if they do not consider the memory access patterns. 

However, it could lead to serious performance issues in HM systems.   

  The problem size of the matrix multiplication is 24MB. In our simulation, we set the 

DRAM size to 8MB and the PCM size to 1GB. This setting tries to make more misses in the 

DRAM. Table 5.6-1 shows the performance of the matrix multiplication using two memory 

access patterns. In the (i, j, k) loops order case, we found PCache and HRank have almost 

identical performance. However, in the (k, j, i) loops order case, we observed that PCache 

has a significant amount of data migration traffic (i.e. 44.85 GB) between the DRAM and 

the PCM. This is because the memory accesses in (k, j, i) loops have large stride sizes and 

tend to cause more misses in the DRAM. One cacheline (i.e. 64 Bytes) miss needs to evict a 

page out from the DRAM and install a page from the PCM (i.e. 8KB). The miss penalty is 

very high. This example shows it is difficult for program developers to choose the best 

policy based on the memory access patterns in their code. It is better to have an interface, 

such as pragmas, APIs, or compiler speculations, to provide detailed memory access 

information for HM systems to decide migration policies.   

 

Table 5.6-1 Performance of the matrix multiplication using two memory access patterns. 

Memory Access Pattern Policy Bandwidth Migration Traffic DRAM Hit Rate 

Loops (i, j, k) 
PCache 9.7GB/s 0.02GB 0.99 

HRank 9.7GB/s 0.04GB 0.98 

Loops (k, j, i) 
PCache 9.6GB/s 44.85GB 0.81 

HRank 9.7GB/s 0.06GB 0.98 

 

  Heterogeneous memories provide an alternative choice for HPC systems to improve 

performance, capacity, and energy. It is still unclear how to manage pages in the HM system 
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for the HPC community. This work provides insights on how we can leverage different 

management policies to benefit HPC workloads. For HPC application developers, they may 

want to have explicit control of page migrations to optimize the performance and energy 

consumption of their applications. However, poor page management leads to potential 

performance and energy loss. The matrix multiplication example in Section 5.6.2 shows it is 

hard to rely wholly on programmers to manage pages to optimize performance and energy. 

Future HM systems should provide a set of migration policies for different execution 

requirements. In addition, the operating systems and programming models should also 

provide an interface (i.e. APIs or Pragma) for programmers. The interface can provide some 

details of memory access patterns in their applications and communicate with the HM 

system to choose the right policy.          

 

 

In this work, we propose, HpMC, a new memory controller design which employs the 

hybrid use of the PCache and HRank policies to deliver better performance or energy based 

on the needs of a system. We also propose an energy-aware mechanism, which dynamically 

switches between PCache and HRank to conserve energy based on the degree of temporal 

locality. We compare HpMC with two single-layer, DRAM and PCM systems using the 

workloads from the lmbench, pf3D and Coral HPC benchmarks. The results show that the 

HpMC delivers higher energy efficiency compared with best available HM approaches and 

improves energy consumption from 13% to 45% while providing the same bandwidth and 

capacity of a traditional DRAM system. 

We conclude that no single management policy delivers optimal bandwidth or energy. 

Our system demonstrates that better performance and energy can be achieved by hybrid use of 

these policies through a well-designed MC. 
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The increasing number of available hardware resources on multicore, multi-memory 

architectures for high-performance systems have stimulated the research community to 

reconsider theories, techniques, and system designs to improve performance and energy 

consumption. More recently, many in the research community have discussed the introduction 

of heterogeneity to processors and memory systems to address the scaling challenges; 

however, such approaches introduce additional complexity into the system design. Resource 

management and energy-aware computation are two major challenges for scalable execution 

on emerging systems.  

This dissertation presented a series of approaches and techniques to resolve the problems 

of resource management for energy efficiency on multicore, multi-memory systems. 
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We started with research on thread-management problems to improve performance and 

energy efficiency on NUMA systems. We presented a technique for determining the number 

of threads using an architecture-aware artificial neural network (ANN). We presented a 

critical-path, thread-mapping algorithm to minimize memory contention. We also presented a 

DyNUMA runtime system incorporating the above two techniques to dynamically manage the 

thread resources and validate the runtime for three diverse platforms.  

We found that any attempt to throttle concurrency on a NUMA system after execution 

begins will redistribute computation between cores, thereby forcing extraneous cache misses, 

remote memory accesses, and contention. Prior work on DCT overlooked this problem, 

resulting in serious performance and energy loss. We extended the previous IPC-based DCT 

performance model and propose a new architecture-aware, ANN model to predict the thread 

concurrency. The model mapped the topology of the ANN to the NUMA architecture to 

capture the performance variation due to different thread mappings. In addition, we invented a 

heuristic thread-mapping algorithm to determine the best mapping configuration to minimize 

the memory contention and optimize performance and energy. We implemented a DyNUMA 

runtime system that employed the ANN predictor and thread-mapping arbiter in conjunction. 

The runtime system automatically changed the thread concurrency and mapping during the 

execution. We evaluated the runtime system using the NAS and Sequoia Benchmarks on three 

different NUMA platforms. Our runtime achieved an 8.7% improvement in wall-clock time 

on average, 16% improvement in EDP, and 12.3% improvement in MFLOPS/Watt.  

 

Next, we presented a novel analytical model for NUMA memory systems using queuing 

methods. Previous work based on the ANN and critical-path thread mapping techniques only 
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considered performance and the energy impact of thread resources. The new models also took 

memory resources into consideration, including memory-level parallelism (MLP) and 

memory frequency. The models considered the combined interactive effects of these factors 

on system performance and energy, and overcame the limitations of previous works wherein 

they only considered these impacts in isolation. The model can help system resource 

managers to understand the tradeoff between performance and energy in a broader perspective. 

We investigated and evaluated the model on a 16-way multicore NUMA platform. We 

showed that significant energy benefits can be brought about from concurrency throttling, 

MLP throttling, and DFS.  

We first investigated the memory system design on modern multicore NUMA systems. 

We found that the memory system performance is determined by three important factors, 

namely thread-level parallelism (TLP), MLP, and memory frequency. In particular, high-level 

TLP results in intensive memory bandwidth, which in turn causes memory contention in 

multiple memory components, such as the memory bus, memory controller, and DRAM chips. 

In addition, MLP also affects the performance of the memory system. MLP determines the 

theoretical bandwidth’s upper bound; by changing the data distribution between memory 

nodes, MLP techniques can control how many memory nodes should be used during the 

execution. Last, the memory controller frequency decides how soon a memory request can be 

served, and this affects the memory latency and bandwidth. Unlike previous models that have 

analyzed single factors in isolation, our queuing models predict the combined effects of the 

three factors mentioned above, which dominate memory performance. We validated our 

model against a 16-way system with four sockets, each of which had one quad-core processor. 

Each processor in the socket had an integrated memory controller with a 16 GB DDR3 

memory system. Our validation results showed that the models could predict performance and 

energy consumption within the 11.3% and 13.1% error. 

We then used the model to analyze the impact of the TLP, MLP, and memory frequency 
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and used it to search for the optimal configuration. We demonstrated that the model-guided 

optimization can improve energy consumption up to 40% for applications that exhibit a high 

demand for memory bandwidth. To conclude, this model provides a new direction for 

designing new mechanisms that consider the interacting effects among TLP, MLP, and 

memory frequency to improve both performance and energy for future high-performance 

computing systems. 

 

Lastly, we focused on the memory management of future heterogeneous memory systems. 

We presented a new memory controller design that combines the best aspects of two baseline 

heterogeneous memory management policies to manage page resources on heterogeneous 

memories. We validated our memory controller design in a simulation framework against real 

hardware on two state-of-the-art HPC servers. We investigated the impact of two policies on 

performance and energy using HPC workloads, and analyzed the effect of spatial and 

temporal locality on the energy consumption of both policies. Based on our locality analysis, 

we proposed a new energy-aware hierarchical memory management policy that dynamically 

switches between the two policies to optimize energy. The major conclusions and 

contributions for the three parts of the research are summarized below. 

In the third part of the research, we first analyzed two baseline heterogeneous memory 

organizations and policies, namely PCache and HRank. We argued that neither of these can 

sustain high performance and low energy consumption across a range of HPC workloads. 

Thus, we proposed HpMC, a new memory controller design that selectively employs and 

alternates between PCache and HRank policies to deliver better performance and lower 

energy consumption. HpMC implements a policy-switching engine (PSE) and several new 

components that extend a vanilla MC to facilitate switching policies and migrating pages. In 

addition, HpMC implements an energy-aware controller (EaC). The EaC uses a 
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locality-monitoring engine that periodically analyzes temporal locality based on reuse 

distance. We defined a temporal locality degree metric used as a guide to switch between 

PCache and HRank policies, in order to optimize energy consumption. We analyzed the 

spatial and temporal locality of over 3,000 diverse memory access patterns arising in the 

Coral Benchmarks and lmbench. We used the results of this experiment to build an 

energy-optimizing policy switching scheme in the EaC. The results showed that the HpMC 

reduces energy consumption by 13% to 45% compared to its counterparts, while providing 

almost the same bandwidth and larger capacity than a DRAM-only system. We concluded 

that better performance and energy can be achieved via the use of hybrid memory 

management policies through a well-designed memory controller. 

 

In this dissertation, we proposed a number of methods and technologies to enable 

resource management and energy-aware computing on emerging heterogeneous, multicore, 

multi-memory HPC systems. However, there are still many topics that have not been fully 

explored. Some example research topics are summarized below. 

Combined, total system heterogeneity 

Reducing power consumption has become critical across all parts of HPC design. HPC 

venders want improved energy efficiency per computing unit to reduce the total energy cost. 

Likewise, HPC system managers want to reduce peak power consumption to improve fault 

tolerance of all system operations. In addition, HPC systems need to keep scaling out the 

computational ability within a reasonable power budget.  

Recent work evaluates and explores the performance and energy consumption for 

CPU+MIC [170] or CPU+GPU [176] designs. Although these works show promise for 
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heterogeneous system design, the potential of heterogeneous system architectures for HPC 

systems has not been fully investigated. 

We are interested in combining our studies of heterogeneous memories with 

computationally heterogeneous systems. Our simulation framework (Chapter 5) should 

provide a foundation for exploring this complicated problem space. This is a major topic for 

exploration in future work. 

Models of combined, total-system performance and energy 

To address the power limits of future systems, we need new cost metrics and models to 

compare the energy efficiency of new system designs. In Chapter 3, we proposed models that 

can capture essential factors impacting performance and energy efficiency. Although these 

models can predict performance and energy on a multicore NUMA architecture, it is less clear 

how they can be extended to predict the performance and energy of different heterogeneous 

system architectures. Our current models implicitly assume that all hardware resources are 

homogeneous. In other words, they assume that the computing systems employ the same 

CPUs and the same memory nodes in the NUMA architecture. In addition, they assume that 

computing systems only use a flat NUMA memory system. With the introduction of 

heterogeneous memories, future memory systems may have multiple memory layers. The first 

layer of memory could be for performance, while the second is for capacity under power 

constraints. The possibilities are almost endless and models will play a key role in evaluating 

new designs. Initially, we plan to extend the current models to predict new heterogeneous 

system designs by adding performance and power parameters that consider heterogeneity. 

Resource Management Automation in Emerging Systems  

We believe future systems will be heterogeneous in all aspects. This means runtime 

systems will be required to evaluate the tradeoffs of resource management in an effort to meet 

user demand efficiently. With future models that consider heterogeneity, we can build 

sophisticated runtime systems to automatically adapt the programming or system behavior in 



 134 

intelligent ways to carry out an efficient execution. This approach can be leveraged to 

automatically (1) identify bottlenecks in different system layers, and (2) evaluate the cost of 

different resource allocations and select the best solution at a fine granularity.  

Initially, we can extend the runtime system implemented in Chapter 3, which currently 

uses DCT and a thread mapping arbiter to allocate thread resources. In the future, the runtime 

system will incorporate different NUMA data allocation policies to manage data in a 

heterogeneous memory system and provide a more efficient way to improve thread-and-data 

affiliation. 
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